Amauri Donadon Leal Junior, Fernando Américo Jorge, Franciele Abigail Vilugron Rodrigues-Vendramini, Pollyanna Cristina Vincenzi Conrado, Deborah de Castro Moreira, Rafaela Daleffe Pepino, Isis Regina Grenier Capoci, Patrícia de Souza Bonfim-Mendonça, Luciana Dias Ghiraldi Lopes, Dennis Armando Bertolini, Izabel Galhardo Demarchi, Jorge Juarez Vieira Teixeira, Érika Seki Kioshima
{"title":"登革热、寨卡和基孔肯雅病毒血清诊断差异中的包膜蛋白:系统综述。","authors":"Amauri Donadon Leal Junior, Fernando Américo Jorge, Franciele Abigail Vilugron Rodrigues-Vendramini, Pollyanna Cristina Vincenzi Conrado, Deborah de Castro Moreira, Rafaela Daleffe Pepino, Isis Regina Grenier Capoci, Patrícia de Souza Bonfim-Mendonça, Luciana Dias Ghiraldi Lopes, Dennis Armando Bertolini, Izabel Galhardo Demarchi, Jorge Juarez Vieira Teixeira, Érika Seki Kioshima","doi":"10.2174/0115680266348828241008214528","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>This systematic review was conducted to evaluate the applicability of the envelope (E) protein in the diagnosis of arboviruses.</p><p><strong>Methods: </strong>This review was performed in accordance with the PRISMA statement. Five databases were explored (PubMed, Web of Science, Scopus, EMBASE, and IEDB). The inclusion and exclusion criteria were applied to study eligibility. After data extraction, the risk of bias and evidence certainty were evaluated according to QUADAS and GRADE assessments, respectively.</p><p><strong>Results: </strong>Eleven studies were included. A total of 11 studies were included in the review. ELISA was the most frequently utilized technique, with two studies employing it for antigen detection and nine for antibodies. The E protein was used as a whole protein, heterologous protein, and peptides. The diagnostic metrics were enhanced by optimizations on techniques, such as antibody capture, competitors, and nanosensors. Monoclonal antibodies showed improved specificity, including in coinfected samples. Seven studies demonstrated a minimal risk of bias, and the evidence certainty was considered moderate for dengue diagnosis.</p><p><strong>Conclusions: </strong>The E protein was successfully employed in different immunological assays with large-scale strategies, enhancing the applicability potential for differential arboviruses' diagnosis. Furthermore, both the antigen design and the implementation of innovative methodologies will have a substantial impact on the quality of the new tests. The PROSPERO protocol related to this work: CRD42021265243.</p>","PeriodicalId":11076,"journal":{"name":"Current topics in medicinal chemistry","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Envelope Protein in Differential Serodiagnosis of Dengue, Zika, and Chikungunya Viruses: A Systematic Review.\",\"authors\":\"Amauri Donadon Leal Junior, Fernando Américo Jorge, Franciele Abigail Vilugron Rodrigues-Vendramini, Pollyanna Cristina Vincenzi Conrado, Deborah de Castro Moreira, Rafaela Daleffe Pepino, Isis Regina Grenier Capoci, Patrícia de Souza Bonfim-Mendonça, Luciana Dias Ghiraldi Lopes, Dennis Armando Bertolini, Izabel Galhardo Demarchi, Jorge Juarez Vieira Teixeira, Érika Seki Kioshima\",\"doi\":\"10.2174/0115680266348828241008214528\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objectives: </strong>This systematic review was conducted to evaluate the applicability of the envelope (E) protein in the diagnosis of arboviruses.</p><p><strong>Methods: </strong>This review was performed in accordance with the PRISMA statement. Five databases were explored (PubMed, Web of Science, Scopus, EMBASE, and IEDB). The inclusion and exclusion criteria were applied to study eligibility. After data extraction, the risk of bias and evidence certainty were evaluated according to QUADAS and GRADE assessments, respectively.</p><p><strong>Results: </strong>Eleven studies were included. A total of 11 studies were included in the review. ELISA was the most frequently utilized technique, with two studies employing it for antigen detection and nine for antibodies. The E protein was used as a whole protein, heterologous protein, and peptides. The diagnostic metrics were enhanced by optimizations on techniques, such as antibody capture, competitors, and nanosensors. Monoclonal antibodies showed improved specificity, including in coinfected samples. Seven studies demonstrated a minimal risk of bias, and the evidence certainty was considered moderate for dengue diagnosis.</p><p><strong>Conclusions: </strong>The E protein was successfully employed in different immunological assays with large-scale strategies, enhancing the applicability potential for differential arboviruses' diagnosis. Furthermore, both the antigen design and the implementation of innovative methodologies will have a substantial impact on the quality of the new tests. The PROSPERO protocol related to this work: CRD42021265243.</p>\",\"PeriodicalId\":11076,\"journal\":{\"name\":\"Current topics in medicinal chemistry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current topics in medicinal chemistry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2174/0115680266348828241008214528\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current topics in medicinal chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0115680266348828241008214528","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Envelope Protein in Differential Serodiagnosis of Dengue, Zika, and Chikungunya Viruses: A Systematic Review.
Objectives: This systematic review was conducted to evaluate the applicability of the envelope (E) protein in the diagnosis of arboviruses.
Methods: This review was performed in accordance with the PRISMA statement. Five databases were explored (PubMed, Web of Science, Scopus, EMBASE, and IEDB). The inclusion and exclusion criteria were applied to study eligibility. After data extraction, the risk of bias and evidence certainty were evaluated according to QUADAS and GRADE assessments, respectively.
Results: Eleven studies were included. A total of 11 studies were included in the review. ELISA was the most frequently utilized technique, with two studies employing it for antigen detection and nine for antibodies. The E protein was used as a whole protein, heterologous protein, and peptides. The diagnostic metrics were enhanced by optimizations on techniques, such as antibody capture, competitors, and nanosensors. Monoclonal antibodies showed improved specificity, including in coinfected samples. Seven studies demonstrated a minimal risk of bias, and the evidence certainty was considered moderate for dengue diagnosis.
Conclusions: The E protein was successfully employed in different immunological assays with large-scale strategies, enhancing the applicability potential for differential arboviruses' diagnosis. Furthermore, both the antigen design and the implementation of innovative methodologies will have a substantial impact on the quality of the new tests. The PROSPERO protocol related to this work: CRD42021265243.
期刊介绍:
Current Topics in Medicinal Chemistry is a forum for the review of areas of keen and topical interest to medicinal chemists and others in the allied disciplines. Each issue is solely devoted to a specific topic, containing six to nine reviews, which provide the reader a comprehensive survey of that area. A Guest Editor who is an expert in the topic under review, will assemble each issue. The scope of Current Topics in Medicinal Chemistry will cover all areas of medicinal chemistry, including current developments in rational drug design, synthetic chemistry, bioorganic chemistry, high-throughput screening, combinatorial chemistry, compound diversity measurements, drug absorption, drug distribution, metabolism, new and emerging drug targets, natural products, pharmacogenomics, and structure-activity relationships. Medicinal chemistry is a rapidly maturing discipline. The study of how structure and function are related is absolutely essential to understanding the molecular basis of life. Current Topics in Medicinal Chemistry aims to contribute to the growth of scientific knowledge and insight, and facilitate the discovery and development of new therapeutic agents to treat debilitating human disorders. The journal is essential for every medicinal chemist who wishes to be kept informed and up-to-date with the latest and most important advances.