Ayla Thijssen, Ramon-Michel Schreuder, Nikoo Dehghani, Marieke Schor, Peter H N de With, Fons van der Sommen, Jurjen J Boonstra, Leon M G Moons, Erik J Schoon
{"title":"利用人工智能提高早期结直肠癌的内窥镜识别率:当前证据与未来方向。","authors":"Ayla Thijssen, Ramon-Michel Schreuder, Nikoo Dehghani, Marieke Schor, Peter H N de With, Fons van der Sommen, Jurjen J Boonstra, Leon M G Moons, Erik J Schoon","doi":"10.1055/a-2403-3103","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background and study aims</b> Artificial intelligence (AI) has great potential to improve endoscopic recognition of early stage colorectal carcinoma (CRC). This scoping review aimed to summarize current evidence on this topic, provide an overview of the methodologies currently used, and guide future research. <b>Methods</b> A systematic search was performed following the PRISMA-Scr guideline. PubMed (including Medline), Scopus, Embase, IEEE Xplore, and ACM Digital Library were searched up to January 2024. Studies were eligible for inclusion when using AI for distinguishing CRC from colorectal polyps on endoscopic imaging, using histopathology as gold standard, reporting sensitivity, specificity, or accuracy as outcomes. <b>Results</b> Of 5024 screened articles, 26 were included. Computer-aided diagnosis (CADx) system classification categories ranged from two categories, such as lesions suitable or unsuitable for endoscopic resection, to five categories, such as hyperplastic polyp, sessile serrated lesion, adenoma, cancer, and other. The number of images used in testing databases varied from 69 to 84,585. Diagnostic performances were divergent, with sensitivities varying from 55.0% to 99.2%, specificities from 67.5% to 100% and accuracies from 74.4% to 94.4%. <b>Conclusions</b> This review highlights that using AI to improve endoscopic recognition of early stage CRC is an upcoming research field. We introduced a suggestions list of essential subjects to report in research regarding the development of endoscopy CADx systems, aiming to facilitate more complete reporting and better comparability between studies. There is a knowledge gap regarding real-time CADx system performance during multicenter external validation. Future research should focus on development of CADx systems that can differentiate CRC from premalignant lesions, while providing an indication of invasion depth.</p>","PeriodicalId":11671,"journal":{"name":"Endoscopy International Open","volume":"12 10","pages":"E1102-E1117"},"PeriodicalIF":2.2000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11466514/pdf/","citationCount":"0","resultStr":"{\"title\":\"Improving the endoscopic recognition of early colorectal carcinoma using artificial intelligence: current evidence and future directions.\",\"authors\":\"Ayla Thijssen, Ramon-Michel Schreuder, Nikoo Dehghani, Marieke Schor, Peter H N de With, Fons van der Sommen, Jurjen J Boonstra, Leon M G Moons, Erik J Schoon\",\"doi\":\"10.1055/a-2403-3103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b>Background and study aims</b> Artificial intelligence (AI) has great potential to improve endoscopic recognition of early stage colorectal carcinoma (CRC). This scoping review aimed to summarize current evidence on this topic, provide an overview of the methodologies currently used, and guide future research. <b>Methods</b> A systematic search was performed following the PRISMA-Scr guideline. PubMed (including Medline), Scopus, Embase, IEEE Xplore, and ACM Digital Library were searched up to January 2024. Studies were eligible for inclusion when using AI for distinguishing CRC from colorectal polyps on endoscopic imaging, using histopathology as gold standard, reporting sensitivity, specificity, or accuracy as outcomes. <b>Results</b> Of 5024 screened articles, 26 were included. Computer-aided diagnosis (CADx) system classification categories ranged from two categories, such as lesions suitable or unsuitable for endoscopic resection, to five categories, such as hyperplastic polyp, sessile serrated lesion, adenoma, cancer, and other. The number of images used in testing databases varied from 69 to 84,585. Diagnostic performances were divergent, with sensitivities varying from 55.0% to 99.2%, specificities from 67.5% to 100% and accuracies from 74.4% to 94.4%. <b>Conclusions</b> This review highlights that using AI to improve endoscopic recognition of early stage CRC is an upcoming research field. We introduced a suggestions list of essential subjects to report in research regarding the development of endoscopy CADx systems, aiming to facilitate more complete reporting and better comparability between studies. There is a knowledge gap regarding real-time CADx system performance during multicenter external validation. Future research should focus on development of CADx systems that can differentiate CRC from premalignant lesions, while providing an indication of invasion depth.</p>\",\"PeriodicalId\":11671,\"journal\":{\"name\":\"Endoscopy International Open\",\"volume\":\"12 10\",\"pages\":\"E1102-E1117\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11466514/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Endoscopy International Open\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1055/a-2403-3103\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"GASTROENTEROLOGY & HEPATOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Endoscopy International Open","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1055/a-2403-3103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"GASTROENTEROLOGY & HEPATOLOGY","Score":null,"Total":0}
Improving the endoscopic recognition of early colorectal carcinoma using artificial intelligence: current evidence and future directions.
Background and study aims Artificial intelligence (AI) has great potential to improve endoscopic recognition of early stage colorectal carcinoma (CRC). This scoping review aimed to summarize current evidence on this topic, provide an overview of the methodologies currently used, and guide future research. Methods A systematic search was performed following the PRISMA-Scr guideline. PubMed (including Medline), Scopus, Embase, IEEE Xplore, and ACM Digital Library were searched up to January 2024. Studies were eligible for inclusion when using AI for distinguishing CRC from colorectal polyps on endoscopic imaging, using histopathology as gold standard, reporting sensitivity, specificity, or accuracy as outcomes. Results Of 5024 screened articles, 26 were included. Computer-aided diagnosis (CADx) system classification categories ranged from two categories, such as lesions suitable or unsuitable for endoscopic resection, to five categories, such as hyperplastic polyp, sessile serrated lesion, adenoma, cancer, and other. The number of images used in testing databases varied from 69 to 84,585. Diagnostic performances were divergent, with sensitivities varying from 55.0% to 99.2%, specificities from 67.5% to 100% and accuracies from 74.4% to 94.4%. Conclusions This review highlights that using AI to improve endoscopic recognition of early stage CRC is an upcoming research field. We introduced a suggestions list of essential subjects to report in research regarding the development of endoscopy CADx systems, aiming to facilitate more complete reporting and better comparability between studies. There is a knowledge gap regarding real-time CADx system performance during multicenter external validation. Future research should focus on development of CADx systems that can differentiate CRC from premalignant lesions, while providing an indication of invasion depth.