运动引起的骨骼肌活性氧平衡适应。

IF 7.1 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Free Radical Biology and Medicine Pub Date : 2024-10-18 DOI:10.1016/j.freeradbiomed.2024.10.270
{"title":"运动引起的骨骼肌活性氧平衡适应。","authors":"","doi":"10.1016/j.freeradbiomed.2024.10.270","DOIUrl":null,"url":null,"abstract":"<div><div>Reactive oxygen species are generated by multiple mechanisms during contractile activity in exercising skeletal muscle and are recognised to play a role in signaling adaptations to the contractions. The sources of the superoxide and hydrogen peroxide generated are now relatively well understood but how the resulting low concentrations of hydrogen peroxide induce activation of multiple signaling pathways remains obscure. Several theories are presented together with accumulating evidence that 2-Cys peroxiredoxins may play a role of “effector” proteins in mediating the signaling actions of hydrogen peroxide. Identification of the mechanisms underlying these pathways offers the potential in the longer term for development of novel interventions to maintain exercise responses in the elderly with the potential to maintain muscle mass and function and consequent quality of life.</div></div>","PeriodicalId":12407,"journal":{"name":"Free Radical Biology and Medicine","volume":null,"pages":null},"PeriodicalIF":7.1000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exercise-induced adaptations to homeostasis of reactive oxygen species in skeletal muscle\",\"authors\":\"\",\"doi\":\"10.1016/j.freeradbiomed.2024.10.270\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Reactive oxygen species are generated by multiple mechanisms during contractile activity in exercising skeletal muscle and are recognised to play a role in signaling adaptations to the contractions. The sources of the superoxide and hydrogen peroxide generated are now relatively well understood but how the resulting low concentrations of hydrogen peroxide induce activation of multiple signaling pathways remains obscure. Several theories are presented together with accumulating evidence that 2-Cys peroxiredoxins may play a role of “effector” proteins in mediating the signaling actions of hydrogen peroxide. Identification of the mechanisms underlying these pathways offers the potential in the longer term for development of novel interventions to maintain exercise responses in the elderly with the potential to maintain muscle mass and function and consequent quality of life.</div></div>\",\"PeriodicalId\":12407,\"journal\":{\"name\":\"Free Radical Biology and Medicine\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2024-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Free Radical Biology and Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0891584924009717\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Free Radical Biology and Medicine","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0891584924009717","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

在运动骨骼肌的收缩活动中,活性氧通过多种机制产生,并被认为在收缩的信号适应中发挥作用。目前,人们对所产生的超氧化物和过氧化氢的来源有了相对深入的了解,但由此产生的低浓度过氧化氢是如何诱导激活多种信号通路的仍不清楚。研究提出了几种理论,并有越来越多的证据表明,2-Cys 过氧化还原蛋白可能在介导过氧化氢的信号传导过程中扮演了 "效应 "蛋白的角色。从长远来看,确定这些途径的基本机制为开发新型干预措施提供了可能性,以维持老年人的运动反应,从而有可能保持肌肉质量和功能,进而提高生活质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Exercise-induced adaptations to homeostasis of reactive oxygen species in skeletal muscle
Reactive oxygen species are generated by multiple mechanisms during contractile activity in exercising skeletal muscle and are recognised to play a role in signaling adaptations to the contractions. The sources of the superoxide and hydrogen peroxide generated are now relatively well understood but how the resulting low concentrations of hydrogen peroxide induce activation of multiple signaling pathways remains obscure. Several theories are presented together with accumulating evidence that 2-Cys peroxiredoxins may play a role of “effector” proteins in mediating the signaling actions of hydrogen peroxide. Identification of the mechanisms underlying these pathways offers the potential in the longer term for development of novel interventions to maintain exercise responses in the elderly with the potential to maintain muscle mass and function and consequent quality of life.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Free Radical Biology and Medicine
Free Radical Biology and Medicine 医学-内分泌学与代谢
CiteScore
14.00
自引率
4.10%
发文量
850
审稿时长
22 days
期刊介绍: Free Radical Biology and Medicine is a leading journal in the field of redox biology, which is the study of the role of reactive oxygen species (ROS) and other oxidizing agents in biological systems. The journal serves as a premier forum for publishing innovative and groundbreaking research that explores the redox biology of health and disease, covering a wide range of topics and disciplines. Free Radical Biology and Medicine also commissions Special Issues that highlight recent advances in both basic and clinical research, with a particular emphasis on the mechanisms underlying altered metabolism and redox signaling. These Special Issues aim to provide a focused platform for the latest research in the field, fostering collaboration and knowledge exchange among researchers and clinicians.
期刊最新文献
Role of microbiota in the GUT-SKIN AXIS responses to outdoor stressors. Influenza A virus-induced glycolysis facilitates virus replication by activating ROS/HIF-1α pathway. SFRRI Inaugural Alberto Boveris Award Lecture Dynamics of Intracellular and Intercellular Redox Communication. The Complement Factor H (Y402H) risk polymorphism for age-related macular degeneration affects metabolism and response to oxidative stress in the retinal pigment epithelium. Nampt/SIRT2/LDHA pathway-mediated lactate production regulates follicular dysplasia in polycystic ovary syndrome
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1