Emmanuel Gonzalez-Sqalli, Matthieu Caron, Benjamin Loppin
{"title":"白色基因作为蟋蟀 Gryllus bimaculatus 的转基因标记。","authors":"Emmanuel Gonzalez-Sqalli, Matthieu Caron, Benjamin Loppin","doi":"10.1093/g3journal/jkae235","DOIUrl":null,"url":null,"abstract":"<p><p>The cricket Gryllus bimaculatus is an emerging model insect of the order Orthoptera that is used in a wide variety of biological research themes. This hemimetabolous species appears highly complementary to Drosophila and other well-established holometabolous models. To improve transgenesis applications in G. bimaculatus, we have designed a transformation marker gene inspired from the widespread Drosophila mini-white+. Using CRISPR/Cas9, we first generated a loss-of-function mutant allele of the Gb-white gene (Gb-w), which exhibits a white eye coloration at all developmental stages. We then demonstrate that transgenic insertions of a piggyBac vector containing a 3xP3-Gb-w+ cassette rescue eye pigmentation. As an application, we used this vector to generate G. bimaculatus lines expressing a centromeric histone H3 variant (CenH3.1) fused to EGFP and validated EGFP-CenH3.1 detection at cricket centromeres. Finally, we demonstrate that Minos-based germline transformation and site-specific plasmid insertion with the ΦC31 integrase system function in G. bimaculatus.</p>","PeriodicalId":12468,"journal":{"name":"G3: Genes|Genomes|Genetics","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The white gene as a transgenesis marker for the cricket Gryllus bimaculatus.\",\"authors\":\"Emmanuel Gonzalez-Sqalli, Matthieu Caron, Benjamin Loppin\",\"doi\":\"10.1093/g3journal/jkae235\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The cricket Gryllus bimaculatus is an emerging model insect of the order Orthoptera that is used in a wide variety of biological research themes. This hemimetabolous species appears highly complementary to Drosophila and other well-established holometabolous models. To improve transgenesis applications in G. bimaculatus, we have designed a transformation marker gene inspired from the widespread Drosophila mini-white+. Using CRISPR/Cas9, we first generated a loss-of-function mutant allele of the Gb-white gene (Gb-w), which exhibits a white eye coloration at all developmental stages. We then demonstrate that transgenic insertions of a piggyBac vector containing a 3xP3-Gb-w+ cassette rescue eye pigmentation. As an application, we used this vector to generate G. bimaculatus lines expressing a centromeric histone H3 variant (CenH3.1) fused to EGFP and validated EGFP-CenH3.1 detection at cricket centromeres. Finally, we demonstrate that Minos-based germline transformation and site-specific plasmid insertion with the ΦC31 integrase system function in G. bimaculatus.</p>\",\"PeriodicalId\":12468,\"journal\":{\"name\":\"G3: Genes|Genomes|Genetics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"G3: Genes|Genomes|Genetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/g3journal/jkae235\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"G3: Genes|Genomes|Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/g3journal/jkae235","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
The white gene as a transgenesis marker for the cricket Gryllus bimaculatus.
The cricket Gryllus bimaculatus is an emerging model insect of the order Orthoptera that is used in a wide variety of biological research themes. This hemimetabolous species appears highly complementary to Drosophila and other well-established holometabolous models. To improve transgenesis applications in G. bimaculatus, we have designed a transformation marker gene inspired from the widespread Drosophila mini-white+. Using CRISPR/Cas9, we first generated a loss-of-function mutant allele of the Gb-white gene (Gb-w), which exhibits a white eye coloration at all developmental stages. We then demonstrate that transgenic insertions of a piggyBac vector containing a 3xP3-Gb-w+ cassette rescue eye pigmentation. As an application, we used this vector to generate G. bimaculatus lines expressing a centromeric histone H3 variant (CenH3.1) fused to EGFP and validated EGFP-CenH3.1 detection at cricket centromeres. Finally, we demonstrate that Minos-based germline transformation and site-specific plasmid insertion with the ΦC31 integrase system function in G. bimaculatus.
期刊介绍:
G3: Genes, Genomes, Genetics provides a forum for the publication of high‐quality foundational research, particularly research that generates useful genetic and genomic information such as genome maps, single gene studies, genome‐wide association and QTL studies, as well as genome reports, mutant screens, and advances in methods and technology. The Editorial Board of G3 believes that rapid dissemination of these data is the necessary foundation for analysis that leads to mechanistic insights.
G3, published by the Genetics Society of America, meets the critical and growing need of the genetics community for rapid review and publication of important results in all areas of genetics. G3 offers the opportunity to publish the puzzling finding or to present unpublished results that may not have been submitted for review and publication due to a perceived lack of a potential high-impact finding. G3 has earned the DOAJ Seal, which is a mark of certification for open access journals, awarded by DOAJ to journals that achieve a high level of openness, adhere to Best Practice and high publishing standards.