Aceso-DSAL:基于远程监督和主动学习从医学文献中发现临床证据

IF 6.7 2区 医学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS IEEE Journal of Biomedical and Health Informatics Pub Date : 2024-10-15 DOI:10.1109/JBHI.2024.3480998
Xiang Zhang, Jiaxin Hu, Qian Lu, Lu Niu, Xinqi Wang
{"title":"Aceso-DSAL:基于远程监督和主动学习从医学文献中发现临床证据","authors":"Xiang Zhang, Jiaxin Hu, Qian Lu, Lu Niu, Xinqi Wang","doi":"10.1109/JBHI.2024.3480998","DOIUrl":null,"url":null,"abstract":"<p><p>Automatic extraction of valuable, structured evidence from the exponentially growing clinical trial literature can help physicians practice evidence-based medicine quickly and accurately. However, current research on evidence extraction has been limited by the lack of generalization ability on various clinical topics and the high cost of manual annotation. In this work, we address these challenges by constructing a PICO-based evidence dataset PICO-DS, covering five clinical topics. This dataset was automatically labeled by a distant supervision based on our proposed textual similarity algorithm called ROUGE-Hybrid. We then present an Aceso-DSAL model, an extension of our previous supervised evidence extraction model - Aceso. In Aceso-DSAL, distantly-labelled and multi-topic PICO-DS was exploited as training corpus, which greatly enhances the generalization of the extraction model. To mitigate the influence of noise unavoidably-introduced in distant supervision, we employ TextCNN and MW-Net models and a paradigm of active learning to weigh the value of each sample. We evaluate the effectiveness of our model on the PICO-DS dataset and find that it outperforms state-of-the-art studies in identifying evidential sentences.</p>","PeriodicalId":13073,"journal":{"name":"IEEE Journal of Biomedical and Health Informatics","volume":null,"pages":null},"PeriodicalIF":6.7000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Aceso-DSAL: Discovering Clinical Evidences from Medical Literature Based on Distant Supervision and Active Learning.\",\"authors\":\"Xiang Zhang, Jiaxin Hu, Qian Lu, Lu Niu, Xinqi Wang\",\"doi\":\"10.1109/JBHI.2024.3480998\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Automatic extraction of valuable, structured evidence from the exponentially growing clinical trial literature can help physicians practice evidence-based medicine quickly and accurately. However, current research on evidence extraction has been limited by the lack of generalization ability on various clinical topics and the high cost of manual annotation. In this work, we address these challenges by constructing a PICO-based evidence dataset PICO-DS, covering five clinical topics. This dataset was automatically labeled by a distant supervision based on our proposed textual similarity algorithm called ROUGE-Hybrid. We then present an Aceso-DSAL model, an extension of our previous supervised evidence extraction model - Aceso. In Aceso-DSAL, distantly-labelled and multi-topic PICO-DS was exploited as training corpus, which greatly enhances the generalization of the extraction model. To mitigate the influence of noise unavoidably-introduced in distant supervision, we employ TextCNN and MW-Net models and a paradigm of active learning to weigh the value of each sample. We evaluate the effectiveness of our model on the PICO-DS dataset and find that it outperforms state-of-the-art studies in identifying evidential sentences.</p>\",\"PeriodicalId\":13073,\"journal\":{\"name\":\"IEEE Journal of Biomedical and Health Informatics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2024-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal of Biomedical and Health Informatics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1109/JBHI.2024.3480998\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Biomedical and Health Informatics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/JBHI.2024.3480998","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

从急剧增长的临床试验文献中自动提取有价值的结构化证据,有助于医生快速准确地实施循证医学。然而,由于缺乏对各种临床主题的概括能力以及人工标注的高成本,目前的证据提取研究一直受到限制。在这项工作中,我们通过构建一个基于 PICO 的证据数据集 PICO-DS,涵盖五个临床主题,来应对这些挑战。该数据集由我们提出的文本相似性算法 ROUGE-Hybrid 进行远距离监督自动标注。然后,我们提出了一个 Aceso-DSAL 模型,它是我们之前的监督证据提取模型 Aceso 的扩展。在Aceso-DSAL中,我们使用了远距离标签和多主题PICO-DS作为训练语料,这大大提高了提取模型的泛化能力。为了减轻远距离监督中不可避免地引入的噪声影响,我们采用了 TextCNN 和 MW-Net 模型以及主动学习范式来权衡每个样本的价值。我们在 PICO-DS 数据集上评估了我们模型的有效性,发现它在识别证据句子方面优于最先进的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Aceso-DSAL: Discovering Clinical Evidences from Medical Literature Based on Distant Supervision and Active Learning.

Automatic extraction of valuable, structured evidence from the exponentially growing clinical trial literature can help physicians practice evidence-based medicine quickly and accurately. However, current research on evidence extraction has been limited by the lack of generalization ability on various clinical topics and the high cost of manual annotation. In this work, we address these challenges by constructing a PICO-based evidence dataset PICO-DS, covering five clinical topics. This dataset was automatically labeled by a distant supervision based on our proposed textual similarity algorithm called ROUGE-Hybrid. We then present an Aceso-DSAL model, an extension of our previous supervised evidence extraction model - Aceso. In Aceso-DSAL, distantly-labelled and multi-topic PICO-DS was exploited as training corpus, which greatly enhances the generalization of the extraction model. To mitigate the influence of noise unavoidably-introduced in distant supervision, we employ TextCNN and MW-Net models and a paradigm of active learning to weigh the value of each sample. We evaluate the effectiveness of our model on the PICO-DS dataset and find that it outperforms state-of-the-art studies in identifying evidential sentences.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Journal of Biomedical and Health Informatics
IEEE Journal of Biomedical and Health Informatics COMPUTER SCIENCE, INFORMATION SYSTEMS-COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
CiteScore
13.60
自引率
6.50%
发文量
1151
期刊介绍: IEEE Journal of Biomedical and Health Informatics publishes original papers presenting recent advances where information and communication technologies intersect with health, healthcare, life sciences, and biomedicine. Topics include acquisition, transmission, storage, retrieval, management, and analysis of biomedical and health information. The journal covers applications of information technologies in healthcare, patient monitoring, preventive care, early disease diagnosis, therapy discovery, and personalized treatment protocols. It explores electronic medical and health records, clinical information systems, decision support systems, medical and biological imaging informatics, wearable systems, body area/sensor networks, and more. Integration-related topics like interoperability, evidence-based medicine, and secure patient data are also addressed.
期刊最新文献
Front Cover Table of Contents Estimation and Conformity Evaluation of Multi-Class Counterfactual Explanations for Chronic Disease Prevention. Hierarchical graph representation learning with multi-granularity features for anti-cancer drug response prediction. Uncertainty Global Contrastive Learning Framework for Semi-Supervised Medical Image Segmentation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1