用于错义突变和药物反应多关系预测的可解释动态定向图卷积网络

IF 6.7 2区 医学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS IEEE Journal of Biomedical and Health Informatics Pub Date : 2024-10-18 DOI:10.1109/JBHI.2024.3483316
Qian Gao, Tao Xu, Xiaodi Li, Wanling Gao, Haoyuan Shi, Youhua Zhang, Jie Chen, Zhenyu Yue
{"title":"用于错义突变和药物反应多关系预测的可解释动态定向图卷积网络","authors":"Qian Gao, Tao Xu, Xiaodi Li, Wanling Gao, Haoyuan Shi, Youhua Zhang, Jie Chen, Zhenyu Yue","doi":"10.1109/JBHI.2024.3483316","DOIUrl":null,"url":null,"abstract":"<p><p>Tumor heterogeneity presents a significant challenge in predicting drug responses, especially as missense mutations within the same gene can lead to varied outcomes such as drug resistance, enhanced sensitivity, or therapeutic ineffectiveness. These complex relationships highlight the need for advanced analytical approaches in oncology. Due to their powerful ability to handle heterogeneous data, graph convolutional networks (GCNs) represent a promising approach for predicting drug responses. However, simple bipartite graphs cannot accurately capture the complex relationships involved in missense mutation and drug response. Furthermore, Deep learning models for drug response are often considered \"black boxes\", and their interpretability remains a widely discussed issue. To address these challenges, we propose an Interpretable Dynamic Directed Graph Convolutional Network (IDDGCN) framework, which incorporates four key features: (1) the use of directed graphs to differentiate between sensitivity and resistance relationships, (2) the dynamic updating of node weights based on node-specific interactions, (3) the exploration of associations between different mutations within the same gene and drug response, and (4) the enhancement of interpretability models through the integration of a weighted mechanism that accounts for the biological significance, alongside a ground truth construction method to evaluate prediction transparency. The experimental results demonstrate that IDDGCN outperforms existing state-of-the-art models, exhibiting excellent predictive power. Both qualitative and quantitative evaluations of its interpretability further highlight its ability to explain predictions, offering a fresh perspective for precision oncology and targeted drug development.</p>","PeriodicalId":13073,"journal":{"name":"IEEE Journal of Biomedical and Health Informatics","volume":"PP ","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interpretable Dynamic Directed Graph Convolutional Network for Multi-Relational Prediction of Missense Mutation and Drug Response.\",\"authors\":\"Qian Gao, Tao Xu, Xiaodi Li, Wanling Gao, Haoyuan Shi, Youhua Zhang, Jie Chen, Zhenyu Yue\",\"doi\":\"10.1109/JBHI.2024.3483316\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Tumor heterogeneity presents a significant challenge in predicting drug responses, especially as missense mutations within the same gene can lead to varied outcomes such as drug resistance, enhanced sensitivity, or therapeutic ineffectiveness. These complex relationships highlight the need for advanced analytical approaches in oncology. Due to their powerful ability to handle heterogeneous data, graph convolutional networks (GCNs) represent a promising approach for predicting drug responses. However, simple bipartite graphs cannot accurately capture the complex relationships involved in missense mutation and drug response. Furthermore, Deep learning models for drug response are often considered \\\"black boxes\\\", and their interpretability remains a widely discussed issue. To address these challenges, we propose an Interpretable Dynamic Directed Graph Convolutional Network (IDDGCN) framework, which incorporates four key features: (1) the use of directed graphs to differentiate between sensitivity and resistance relationships, (2) the dynamic updating of node weights based on node-specific interactions, (3) the exploration of associations between different mutations within the same gene and drug response, and (4) the enhancement of interpretability models through the integration of a weighted mechanism that accounts for the biological significance, alongside a ground truth construction method to evaluate prediction transparency. The experimental results demonstrate that IDDGCN outperforms existing state-of-the-art models, exhibiting excellent predictive power. Both qualitative and quantitative evaluations of its interpretability further highlight its ability to explain predictions, offering a fresh perspective for precision oncology and targeted drug development.</p>\",\"PeriodicalId\":13073,\"journal\":{\"name\":\"IEEE Journal of Biomedical and Health Informatics\",\"volume\":\"PP \",\"pages\":\"\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2024-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal of Biomedical and Health Informatics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1109/JBHI.2024.3483316\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Biomedical and Health Informatics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/JBHI.2024.3483316","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

肿瘤的异质性给预测药物反应带来了巨大挑战,尤其是同一基因的错义突变会导致不同的结果,如耐药性、敏感性增强或治疗无效。这些复杂的关系凸显了肿瘤学对先进分析方法的需求。图卷积网络(GCN)具有处理异构数据的强大能力,是预测药物反应的一种有前途的方法。然而,简单的双向图无法准确捕捉错义突变与药物反应之间的复杂关系。此外,针对药物反应的深度学习模型通常被认为是 "黑盒子",其可解释性仍然是一个被广泛讨论的问题。为了应对这些挑战,我们提出了可解释动态有向图卷积网络(IDDGCN)框架,该框架包含四个关键特征:(1) 使用有向图区分敏感性和耐药性关系;(2) 根据节点特异性相互作用动态更新节点权重;(3) 探索同一基因内不同突变与药物反应之间的关联;(4) 通过整合考虑生物学意义的加权机制来增强可解释性模型,同时采用地面实况构建方法来评估预测的透明度。实验结果表明,IDDGCN 优于现有的先进模型,表现出卓越的预测能力。对其可解释性的定性和定量评估进一步突出了其解释预测的能力,为精准肿瘤学和靶向药物开发提供了一个全新的视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Interpretable Dynamic Directed Graph Convolutional Network for Multi-Relational Prediction of Missense Mutation and Drug Response.

Tumor heterogeneity presents a significant challenge in predicting drug responses, especially as missense mutations within the same gene can lead to varied outcomes such as drug resistance, enhanced sensitivity, or therapeutic ineffectiveness. These complex relationships highlight the need for advanced analytical approaches in oncology. Due to their powerful ability to handle heterogeneous data, graph convolutional networks (GCNs) represent a promising approach for predicting drug responses. However, simple bipartite graphs cannot accurately capture the complex relationships involved in missense mutation and drug response. Furthermore, Deep learning models for drug response are often considered "black boxes", and their interpretability remains a widely discussed issue. To address these challenges, we propose an Interpretable Dynamic Directed Graph Convolutional Network (IDDGCN) framework, which incorporates four key features: (1) the use of directed graphs to differentiate between sensitivity and resistance relationships, (2) the dynamic updating of node weights based on node-specific interactions, (3) the exploration of associations between different mutations within the same gene and drug response, and (4) the enhancement of interpretability models through the integration of a weighted mechanism that accounts for the biological significance, alongside a ground truth construction method to evaluate prediction transparency. The experimental results demonstrate that IDDGCN outperforms existing state-of-the-art models, exhibiting excellent predictive power. Both qualitative and quantitative evaluations of its interpretability further highlight its ability to explain predictions, offering a fresh perspective for precision oncology and targeted drug development.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Journal of Biomedical and Health Informatics
IEEE Journal of Biomedical and Health Informatics COMPUTER SCIENCE, INFORMATION SYSTEMS-COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
CiteScore
13.60
自引率
6.50%
发文量
1151
期刊介绍: IEEE Journal of Biomedical and Health Informatics publishes original papers presenting recent advances where information and communication technologies intersect with health, healthcare, life sciences, and biomedicine. Topics include acquisition, transmission, storage, retrieval, management, and analysis of biomedical and health information. The journal covers applications of information technologies in healthcare, patient monitoring, preventive care, early disease diagnosis, therapy discovery, and personalized treatment protocols. It explores electronic medical and health records, clinical information systems, decision support systems, medical and biological imaging informatics, wearable systems, body area/sensor networks, and more. Integration-related topics like interoperability, evidence-based medicine, and secure patient data are also addressed.
期刊最新文献
Machine Learning Identification and Classification of Mitosis and Migration of Cancer Cells in a Lab-on-CMOS Capacitance Sensing platform. Biomedical Information Integration via Adaptive Large Language Model Construction. BloodPatrol: Revolutionizing Blood Cancer Diagnosis - Advanced Real-Time Detection Leveraging Deep Learning & Cloud Technologies. EEG Detection and Prediction of Freezing of Gait in Parkinson's Disease Based on Spatiotemporal Coherent Modes. Functional Data Analysis of Hand Rotation for Open Surgical Suturing Skill Assessment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1