{"title":"通过染色体微阵列分析和核型检测超声异常胎儿的染色体异常。","authors":"Liubing Lan, Dandan Luo, Jianwen Lian, Lingna She, Bosen Zhang, Hua Zhong, Huaxian Wang, Heming Wu","doi":"10.2147/IJGM.S483290","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Chromosomal microarray analysis (CMA) is a first-line test to assess the genetic etiology of fetal ultrasound abnormalities. The aim of this study was to evaluate the effectiveness of CMA in detecting chromosomal abnormalities in fetuses with ultrasound abnormalities, including structural abnormalities and non-structural abnormalities.</p><p><strong>Methods: </strong>A retrospective study was conducted on 368 fetuses with abnormal ultrasound who received interventional prenatal diagnosis at Meizhou People's Hospital from October 2022 to December 2023. Samples of villi, amniotic fluid, and umbilical cord blood were collected according to different gestational weeks, and karyotype and CMA analyses were performed. The detection rate of chromosomal abnormalities in different ultrasonic abnormalities was analyzed.</p><p><strong>Results: </strong>There were 368 fetuses with abnormal ultrasound, including 114 (31.0%) with structural abnormalities, 225 (61.1%) with non-structural abnormalities, and 29 (7.9%) with structural combined with non-structural abnormalities. The detection rate of aneuploidy and pathogenic (P)/likely pathogenic (LP) copy number variations (CNVs) of CMA in fetuses with structural abnormalities was 5.26% (6/114), the detection rate of karyotype was 2.63% (3/114), and the additional diagnosis rate of CMA was 2.63%. In the fetuses with ultrasonic non-structural abnormalities, the detection rate of karyotype was 6.22% (14/225), the detection rate of aneuploidy and P/LP CNVs in fetuses with ultrasonic structural abnormalities was 9.33% (21/225), and the additional diagnosis rate of CMA was 3.11%. There was no significant difference in chromosome abnormality detection rate of CMA among structural abnormality, non-structural abnormality, and structural abnormality combined with non-structural abnormality groups (5.3%, 9.3%, and 13.8%, <i>p</i> = 0.241), also among multiple ultrasonic abnormality and single ultrasonic abnormality groups (14.8%, and 7.3%, <i>p</i> = 0.105).</p><p><strong>Conclusion: </strong>CMA can significantly improve the detection rate of genetic abnormalities in prenatal diagnosis of ultrasonic abnormal fetuses compared with karyotype analysis. CMA is a more effective tool than karyotyping alone in detecting chromosomal abnormalities in fetuses with ultrasound abnormalities.</p>","PeriodicalId":14131,"journal":{"name":"International Journal of General Medicine","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11488349/pdf/","citationCount":"0","resultStr":"{\"title\":\"Chromosomal Abnormalities Detected by Chromosomal Microarray Analysis and Karyotype in Fetuses with Ultrasound Abnormalities.\",\"authors\":\"Liubing Lan, Dandan Luo, Jianwen Lian, Lingna She, Bosen Zhang, Hua Zhong, Huaxian Wang, Heming Wu\",\"doi\":\"10.2147/IJGM.S483290\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>Chromosomal microarray analysis (CMA) is a first-line test to assess the genetic etiology of fetal ultrasound abnormalities. The aim of this study was to evaluate the effectiveness of CMA in detecting chromosomal abnormalities in fetuses with ultrasound abnormalities, including structural abnormalities and non-structural abnormalities.</p><p><strong>Methods: </strong>A retrospective study was conducted on 368 fetuses with abnormal ultrasound who received interventional prenatal diagnosis at Meizhou People's Hospital from October 2022 to December 2023. Samples of villi, amniotic fluid, and umbilical cord blood were collected according to different gestational weeks, and karyotype and CMA analyses were performed. The detection rate of chromosomal abnormalities in different ultrasonic abnormalities was analyzed.</p><p><strong>Results: </strong>There were 368 fetuses with abnormal ultrasound, including 114 (31.0%) with structural abnormalities, 225 (61.1%) with non-structural abnormalities, and 29 (7.9%) with structural combined with non-structural abnormalities. The detection rate of aneuploidy and pathogenic (P)/likely pathogenic (LP) copy number variations (CNVs) of CMA in fetuses with structural abnormalities was 5.26% (6/114), the detection rate of karyotype was 2.63% (3/114), and the additional diagnosis rate of CMA was 2.63%. In the fetuses with ultrasonic non-structural abnormalities, the detection rate of karyotype was 6.22% (14/225), the detection rate of aneuploidy and P/LP CNVs in fetuses with ultrasonic structural abnormalities was 9.33% (21/225), and the additional diagnosis rate of CMA was 3.11%. There was no significant difference in chromosome abnormality detection rate of CMA among structural abnormality, non-structural abnormality, and structural abnormality combined with non-structural abnormality groups (5.3%, 9.3%, and 13.8%, <i>p</i> = 0.241), also among multiple ultrasonic abnormality and single ultrasonic abnormality groups (14.8%, and 7.3%, <i>p</i> = 0.105).</p><p><strong>Conclusion: </strong>CMA can significantly improve the detection rate of genetic abnormalities in prenatal diagnosis of ultrasonic abnormal fetuses compared with karyotype analysis. CMA is a more effective tool than karyotyping alone in detecting chromosomal abnormalities in fetuses with ultrasound abnormalities.</p>\",\"PeriodicalId\":14131,\"journal\":{\"name\":\"International Journal of General Medicine\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11488349/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of General Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2147/IJGM.S483290\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"MEDICINE, GENERAL & INTERNAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of General Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2147/IJGM.S483290","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
Chromosomal Abnormalities Detected by Chromosomal Microarray Analysis and Karyotype in Fetuses with Ultrasound Abnormalities.
Objective: Chromosomal microarray analysis (CMA) is a first-line test to assess the genetic etiology of fetal ultrasound abnormalities. The aim of this study was to evaluate the effectiveness of CMA in detecting chromosomal abnormalities in fetuses with ultrasound abnormalities, including structural abnormalities and non-structural abnormalities.
Methods: A retrospective study was conducted on 368 fetuses with abnormal ultrasound who received interventional prenatal diagnosis at Meizhou People's Hospital from October 2022 to December 2023. Samples of villi, amniotic fluid, and umbilical cord blood were collected according to different gestational weeks, and karyotype and CMA analyses were performed. The detection rate of chromosomal abnormalities in different ultrasonic abnormalities was analyzed.
Results: There were 368 fetuses with abnormal ultrasound, including 114 (31.0%) with structural abnormalities, 225 (61.1%) with non-structural abnormalities, and 29 (7.9%) with structural combined with non-structural abnormalities. The detection rate of aneuploidy and pathogenic (P)/likely pathogenic (LP) copy number variations (CNVs) of CMA in fetuses with structural abnormalities was 5.26% (6/114), the detection rate of karyotype was 2.63% (3/114), and the additional diagnosis rate of CMA was 2.63%. In the fetuses with ultrasonic non-structural abnormalities, the detection rate of karyotype was 6.22% (14/225), the detection rate of aneuploidy and P/LP CNVs in fetuses with ultrasonic structural abnormalities was 9.33% (21/225), and the additional diagnosis rate of CMA was 3.11%. There was no significant difference in chromosome abnormality detection rate of CMA among structural abnormality, non-structural abnormality, and structural abnormality combined with non-structural abnormality groups (5.3%, 9.3%, and 13.8%, p = 0.241), also among multiple ultrasonic abnormality and single ultrasonic abnormality groups (14.8%, and 7.3%, p = 0.105).
Conclusion: CMA can significantly improve the detection rate of genetic abnormalities in prenatal diagnosis of ultrasonic abnormal fetuses compared with karyotype analysis. CMA is a more effective tool than karyotyping alone in detecting chromosomal abnormalities in fetuses with ultrasound abnormalities.
期刊介绍:
The International Journal of General Medicine is an international, peer-reviewed, open access journal that focuses on general and internal medicine, pathogenesis, epidemiology, diagnosis, monitoring and treatment protocols. The journal is characterized by the rapid reporting of reviews, original research and clinical studies across all disease areas.
A key focus of the journal is the elucidation of disease processes and management protocols resulting in improved outcomes for the patient. Patient perspectives such as satisfaction, quality of life, health literacy and communication and their role in developing new healthcare programs and optimizing clinical outcomes are major areas of interest for the journal.
As of 1st April 2019, the International Journal of General Medicine will no longer consider meta-analyses for publication.