大麻素和遗传癫痫模型:以 CDKL5 缺失症为重点的综述。

IF 5.6 2区 生物学 International Journal of Molecular Sciences Pub Date : 2024-10-07 DOI:10.3390/ijms251910768
Sean Massey, Anita Quigley, Simone Rochfort, John Christodoulou, Nicole J Van Bergen
{"title":"大麻素和遗传癫痫模型:以 CDKL5 缺失症为重点的综述。","authors":"Sean Massey, Anita Quigley, Simone Rochfort, John Christodoulou, Nicole J Van Bergen","doi":"10.3390/ijms251910768","DOIUrl":null,"url":null,"abstract":"<p><p>Pediatric genetic epilepsies, such as CDKL5 Deficiency Disorder (CDD), are severely debilitating, with early-onset seizures occurring more than ten times daily in extreme cases. Existing antiseizure drugs frequently prove ineffective, which significantly impacts child development and diminishes the quality of life for patients and caregivers. The relaxation of cannabis legislation has increased research into potential therapeutic properties of phytocannabinoids such as cannabidiol (CBD) and Δ9-tetrahydrocannabinol (THC). CBD's antiseizure properties have shown promise, particularly in treating drug-resistant genetic epilepsies associated with Lennox-Gastaut syndrome (LGS), Dravet syndrome (DS), and Tuberous Sclerosis Complex (TSC). However, specific research on CDD remains limited. Much of the current evidence relies on anecdotal reports of artisanal products lacking accurate data on cannabinoid composition. Utilizing model systems like patient-derived iPSC neurons and brain organoids allows precise dosing and comprehensive exploration of cannabinoids' pharmacodynamics. This review explores the potential of CBD, THC, and other trace cannabinoids in treating CDD and focusing on clinical trials and preclinical models to elucidate the cannabinoid's potential mechanisms of action in disrupted CDD pathways and strengthen the case for further research into their potential as anti-epileptic drugs for CDD. This review offers an updated perspective on cannabinoid's therapeutic potential for CDD.</p>","PeriodicalId":14156,"journal":{"name":"International Journal of Molecular Sciences","volume":null,"pages":null},"PeriodicalIF":5.6000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11476665/pdf/","citationCount":"0","resultStr":"{\"title\":\"Cannabinoids and Genetic Epilepsy Models: A Review with Focus on CDKL5 Deficiency Disorder.\",\"authors\":\"Sean Massey, Anita Quigley, Simone Rochfort, John Christodoulou, Nicole J Van Bergen\",\"doi\":\"10.3390/ijms251910768\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Pediatric genetic epilepsies, such as CDKL5 Deficiency Disorder (CDD), are severely debilitating, with early-onset seizures occurring more than ten times daily in extreme cases. Existing antiseizure drugs frequently prove ineffective, which significantly impacts child development and diminishes the quality of life for patients and caregivers. The relaxation of cannabis legislation has increased research into potential therapeutic properties of phytocannabinoids such as cannabidiol (CBD) and Δ9-tetrahydrocannabinol (THC). CBD's antiseizure properties have shown promise, particularly in treating drug-resistant genetic epilepsies associated with Lennox-Gastaut syndrome (LGS), Dravet syndrome (DS), and Tuberous Sclerosis Complex (TSC). However, specific research on CDD remains limited. Much of the current evidence relies on anecdotal reports of artisanal products lacking accurate data on cannabinoid composition. Utilizing model systems like patient-derived iPSC neurons and brain organoids allows precise dosing and comprehensive exploration of cannabinoids' pharmacodynamics. This review explores the potential of CBD, THC, and other trace cannabinoids in treating CDD and focusing on clinical trials and preclinical models to elucidate the cannabinoid's potential mechanisms of action in disrupted CDD pathways and strengthen the case for further research into their potential as anti-epileptic drugs for CDD. This review offers an updated perspective on cannabinoid's therapeutic potential for CDD.</p>\",\"PeriodicalId\":14156,\"journal\":{\"name\":\"International Journal of Molecular Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2024-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11476665/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Molecular Sciences\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3390/ijms251910768\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Molecular Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/ijms251910768","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

小儿遗传性癫痫,如 CDKL5 缺乏症(CDD),会严重削弱患者的能力,在极端情况下,早期发作的癫痫每天会发作十余次。现有的抗癫痫药物经常被证明无效,这严重影响了儿童的发育,降低了患者和护理人员的生活质量。大麻立法的放宽增加了对大麻二酚(CBD)和Δ9-四氢大麻酚(THC)等植物大麻素潜在治疗特性的研究。大麻二酚的抗癫痫特性已显示出其前景,尤其是在治疗与伦诺克斯-加斯塔特综合征(Lennox-Gastaut syndrome,LGS)、德拉沃综合征(Dravet syndrome,DS)和结节性硬化综合征(Tuberous Sclerosis Complex,TSC)相关的耐药性遗传性癫痫方面。然而,针对 CDD 的具体研究仍然有限。目前的证据大多依赖于对手工产品的传闻报道,缺乏大麻素成分的准确数据。利用源自患者的 iPSC 神经元和脑器官组织等模型系统,可以精确计量并全面探索大麻素的药效学。本综述探讨了 CBD、THC 和其他微量大麻素在治疗 CDD 方面的潜力,重点关注临床试验和临床前模型,以阐明大麻素在被破坏的 CDD 通路中的潜在作用机制,并加强对其作为 CDD 抗癫痫药物的潜力的进一步研究。本综述从最新角度阐述了大麻素治疗 CDD 的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Cannabinoids and Genetic Epilepsy Models: A Review with Focus on CDKL5 Deficiency Disorder.

Pediatric genetic epilepsies, such as CDKL5 Deficiency Disorder (CDD), are severely debilitating, with early-onset seizures occurring more than ten times daily in extreme cases. Existing antiseizure drugs frequently prove ineffective, which significantly impacts child development and diminishes the quality of life for patients and caregivers. The relaxation of cannabis legislation has increased research into potential therapeutic properties of phytocannabinoids such as cannabidiol (CBD) and Δ9-tetrahydrocannabinol (THC). CBD's antiseizure properties have shown promise, particularly in treating drug-resistant genetic epilepsies associated with Lennox-Gastaut syndrome (LGS), Dravet syndrome (DS), and Tuberous Sclerosis Complex (TSC). However, specific research on CDD remains limited. Much of the current evidence relies on anecdotal reports of artisanal products lacking accurate data on cannabinoid composition. Utilizing model systems like patient-derived iPSC neurons and brain organoids allows precise dosing and comprehensive exploration of cannabinoids' pharmacodynamics. This review explores the potential of CBD, THC, and other trace cannabinoids in treating CDD and focusing on clinical trials and preclinical models to elucidate the cannabinoid's potential mechanisms of action in disrupted CDD pathways and strengthen the case for further research into their potential as anti-epileptic drugs for CDD. This review offers an updated perspective on cannabinoid's therapeutic potential for CDD.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
10.70%
发文量
13472
审稿时长
1.7 months
期刊介绍: The International Journal of Molecular Sciences (ISSN 1422-0067) provides an advanced forum for chemistry, molecular physics (chemical physics and physical chemistry) and molecular biology. It publishes research articles, reviews, communications and short notes. Our aim is to encourage scientists to publish their theoretical and experimental results in as much detail as possible. Therefore, there is no restriction on the length of the papers or the number of electronics supplementary files. For articles with computational results, the full experimental details must be provided so that the results can be reproduced. Electronic files regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material (including animated pictures, videos, interactive Excel sheets, software executables and others).
期刊最新文献
B-Cell Maturation Antigen (BCMA) as a Biomarker and Potential Treatment Target in Systemic Lupus Erythematosus. 3,8-Disubstituted Pyrazolo[1,5-a]quinazoline as GABAA Receptor Modulators: Synthesis, Electrophysiological Assays, and Molecular Modelling Studies. A Rare Case of TP63-Associated Lymphopenia Revealed by Newborn Screening Using TREC. A Review on Apple Pomace Bioactives for Natural Functional Food and Cosmetic Products with Therapeutic Health-Promoting Properties. Advancements in the Development of Anti-SARS-CoV-2 Therapeutics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1