Kana Umemura, Shiho Miyata, Guanlin Lyu, Yoshihito Suda, Yuto Yoshimoto, Taiki Terajima, Hong Liu, Jun Kambe, Yuko Makioka-Itaya, Ryo Inoue, Chunmei Li, Yuki Yamamoto, Kentaro Nagaoka
{"title":"断奶仔猪日粮添加恩拉霉素后微生物生态系统和血清代谢组学的变化","authors":"Kana Umemura, Shiho Miyata, Guanlin Lyu, Yoshihito Suda, Yuto Yoshimoto, Taiki Terajima, Hong Liu, Jun Kambe, Yuko Makioka-Itaya, Ryo Inoue, Chunmei Li, Yuki Yamamoto, Kentaro Nagaoka","doi":"10.1111/jpn.14059","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Antibiotics are used in swine production for growth promotion and disease prevention, raising concerns about environmental contamination and antibiotic resistance. In this study, we investigated the effects of enramycin supplementation on piglet growth, gut microbiota and blood metabolites. Enramycin promotes piglet growth and temporarily reduces diarrhoea. Gut microbiota analysis revealed changes in microbial composition, including an increase in the abundance of <i>Limosilactobacillus reuteri</i>. Metabolomic analysis has identified elevated levels of dimethylglycine, a known growth-promoting factor, in the enramycin group. Liver gene expression analysis revealed increased mRNA levels of ALDH and dimethylglycine dehydrogenase, which are enzymes involved in dimethylglycine metabolism. The enramycin-treated group had a higher concentration of acetic acid in caecal contents, and their caecal acetic acid concentrations were positively correlated with the abundance of <i>L. reuteri</i> and the content of serum dimethylglycine, respectively. These findings suggest that the promotion effect of enramycin on piglet growth is related to the gut microbiota, blood metabolites and liver gene expression, which provide insights into antibiotic alternatives for swine production.</p>\n </div>","PeriodicalId":14942,"journal":{"name":"Journal of Animal Physiology and Animal Nutrition","volume":"109 2","pages":"402-410"},"PeriodicalIF":2.2000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Changes in Microbial Ecosystems and Serum Metabolomics by Diet Supplementation With Enramycin in Weaning Piglets\",\"authors\":\"Kana Umemura, Shiho Miyata, Guanlin Lyu, Yoshihito Suda, Yuto Yoshimoto, Taiki Terajima, Hong Liu, Jun Kambe, Yuko Makioka-Itaya, Ryo Inoue, Chunmei Li, Yuki Yamamoto, Kentaro Nagaoka\",\"doi\":\"10.1111/jpn.14059\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Antibiotics are used in swine production for growth promotion and disease prevention, raising concerns about environmental contamination and antibiotic resistance. In this study, we investigated the effects of enramycin supplementation on piglet growth, gut microbiota and blood metabolites. Enramycin promotes piglet growth and temporarily reduces diarrhoea. Gut microbiota analysis revealed changes in microbial composition, including an increase in the abundance of <i>Limosilactobacillus reuteri</i>. Metabolomic analysis has identified elevated levels of dimethylglycine, a known growth-promoting factor, in the enramycin group. Liver gene expression analysis revealed increased mRNA levels of ALDH and dimethylglycine dehydrogenase, which are enzymes involved in dimethylglycine metabolism. The enramycin-treated group had a higher concentration of acetic acid in caecal contents, and their caecal acetic acid concentrations were positively correlated with the abundance of <i>L. reuteri</i> and the content of serum dimethylglycine, respectively. These findings suggest that the promotion effect of enramycin on piglet growth is related to the gut microbiota, blood metabolites and liver gene expression, which provide insights into antibiotic alternatives for swine production.</p>\\n </div>\",\"PeriodicalId\":14942,\"journal\":{\"name\":\"Journal of Animal Physiology and Animal Nutrition\",\"volume\":\"109 2\",\"pages\":\"402-410\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Animal Physiology and Animal Nutrition\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/jpn.14059\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURE, DAIRY & ANIMAL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Animal Physiology and Animal Nutrition","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jpn.14059","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
Changes in Microbial Ecosystems and Serum Metabolomics by Diet Supplementation With Enramycin in Weaning Piglets
Antibiotics are used in swine production for growth promotion and disease prevention, raising concerns about environmental contamination and antibiotic resistance. In this study, we investigated the effects of enramycin supplementation on piglet growth, gut microbiota and blood metabolites. Enramycin promotes piglet growth and temporarily reduces diarrhoea. Gut microbiota analysis revealed changes in microbial composition, including an increase in the abundance of Limosilactobacillus reuteri. Metabolomic analysis has identified elevated levels of dimethylglycine, a known growth-promoting factor, in the enramycin group. Liver gene expression analysis revealed increased mRNA levels of ALDH and dimethylglycine dehydrogenase, which are enzymes involved in dimethylglycine metabolism. The enramycin-treated group had a higher concentration of acetic acid in caecal contents, and their caecal acetic acid concentrations were positively correlated with the abundance of L. reuteri and the content of serum dimethylglycine, respectively. These findings suggest that the promotion effect of enramycin on piglet growth is related to the gut microbiota, blood metabolites and liver gene expression, which provide insights into antibiotic alternatives for swine production.
期刊介绍:
As an international forum for hypothesis-driven scientific research, the Journal of Animal Physiology and Animal Nutrition publishes original papers in the fields of animal physiology, biochemistry and physiology of nutrition, animal nutrition, feed technology and preservation (only when related to animal nutrition). Well-conducted scientific work that meets the technical and ethical standards is considered only on the basis of scientific rigor.
Research on farm and companion animals is preferred. Comparative work on exotic species is welcome too. Pharmacological or toxicological experiments with a direct reference to nutrition are also considered. Manuscripts on fish and other aquatic non-mammals with topics on growth or nutrition will not be accepted. Manuscripts may be rejected on the grounds that the subject is too specialized or that the contribution they make to animal physiology and nutrition is insufficient.
In addition, reviews on topics of current interest within the scope of the journal are welcome. Authors are advised to send an outline to the Editorial Office for approval prior to submission.