Sabrina Toro, Anna V Anagnostopoulos, Susan M Bello, Kai Blumberg, Rhiannon Cameron, Leigh Carmody, Alexander D Diehl, Damion M Dooley, William D Duncan, Petra Fey, Pascale Gaudet, Nomi L Harris, Marcin P Joachimiak, Leila Kiani, Tiago Lubiana, Monica C Munoz-Torres, Shawn O'Neil, David Osumi-Sutherland, Aleix Puig-Barbe, Justin T Reese, Leonore Reiser, Sofia Mc Robb, Troy Ruemping, James Seager, Eric Sid, Ray Stefancsik, Magalie Weber, Valerie Wood, Melissa A Haendel, Christopher J Mungall
{"title":"使用人工智能的本体动态检索增强生成(DRAGON-AI)。","authors":"Sabrina Toro, Anna V Anagnostopoulos, Susan M Bello, Kai Blumberg, Rhiannon Cameron, Leigh Carmody, Alexander D Diehl, Damion M Dooley, William D Duncan, Petra Fey, Pascale Gaudet, Nomi L Harris, Marcin P Joachimiak, Leila Kiani, Tiago Lubiana, Monica C Munoz-Torres, Shawn O'Neil, David Osumi-Sutherland, Aleix Puig-Barbe, Justin T Reese, Leonore Reiser, Sofia Mc Robb, Troy Ruemping, James Seager, Eric Sid, Ray Stefancsik, Magalie Weber, Valerie Wood, Melissa A Haendel, Christopher J Mungall","doi":"10.1186/s13326-024-00320-3","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Ontologies are fundamental components of informatics infrastructure in domains such as biomedical, environmental, and food sciences, representing consensus knowledge in an accurate and computable form. However, their construction and maintenance demand substantial resources and necessitate substantial collaboration between domain experts, curators, and ontology experts. We present Dynamic Retrieval Augmented Generation of Ontologies using AI (DRAGON-AI), an ontology generation method employing Large Language Models (LLMs) and Retrieval Augmented Generation (RAG). DRAGON-AI can generate textual and logical ontology components, drawing from existing knowledge in multiple ontologies and unstructured text sources.</p><p><strong>Results: </strong>We assessed performance of DRAGON-AI on de novo term construction across ten diverse ontologies, making use of extensive manual evaluation of results. Our method has high precision for relationship generation, but has slightly lower precision than from logic-based reasoning. Our method is also able to generate definitions deemed acceptable by expert evaluators, but these scored worse than human-authored definitions. Notably, evaluators with the highest level of confidence in a domain were better able to discern flaws in AI-generated definitions. We also demonstrated the ability of DRAGON-AI to incorporate natural language instructions in the form of GitHub issues.</p><p><strong>Conclusions: </strong>These findings suggest DRAGON-AI's potential to substantially aid the manual ontology construction process. However, our results also underscore the importance of having expert curators and ontology editors drive the ontology generation process.</p>","PeriodicalId":15055,"journal":{"name":"Journal of Biomedical Semantics","volume":"15 1","pages":"19"},"PeriodicalIF":1.6000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11484368/pdf/","citationCount":"0","resultStr":"{\"title\":\"Dynamic Retrieval Augmented Generation of Ontologies using Artificial Intelligence (DRAGON-AI).\",\"authors\":\"Sabrina Toro, Anna V Anagnostopoulos, Susan M Bello, Kai Blumberg, Rhiannon Cameron, Leigh Carmody, Alexander D Diehl, Damion M Dooley, William D Duncan, Petra Fey, Pascale Gaudet, Nomi L Harris, Marcin P Joachimiak, Leila Kiani, Tiago Lubiana, Monica C Munoz-Torres, Shawn O'Neil, David Osumi-Sutherland, Aleix Puig-Barbe, Justin T Reese, Leonore Reiser, Sofia Mc Robb, Troy Ruemping, James Seager, Eric Sid, Ray Stefancsik, Magalie Weber, Valerie Wood, Melissa A Haendel, Christopher J Mungall\",\"doi\":\"10.1186/s13326-024-00320-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Ontologies are fundamental components of informatics infrastructure in domains such as biomedical, environmental, and food sciences, representing consensus knowledge in an accurate and computable form. However, their construction and maintenance demand substantial resources and necessitate substantial collaboration between domain experts, curators, and ontology experts. We present Dynamic Retrieval Augmented Generation of Ontologies using AI (DRAGON-AI), an ontology generation method employing Large Language Models (LLMs) and Retrieval Augmented Generation (RAG). DRAGON-AI can generate textual and logical ontology components, drawing from existing knowledge in multiple ontologies and unstructured text sources.</p><p><strong>Results: </strong>We assessed performance of DRAGON-AI on de novo term construction across ten diverse ontologies, making use of extensive manual evaluation of results. Our method has high precision for relationship generation, but has slightly lower precision than from logic-based reasoning. Our method is also able to generate definitions deemed acceptable by expert evaluators, but these scored worse than human-authored definitions. Notably, evaluators with the highest level of confidence in a domain were better able to discern flaws in AI-generated definitions. We also demonstrated the ability of DRAGON-AI to incorporate natural language instructions in the form of GitHub issues.</p><p><strong>Conclusions: </strong>These findings suggest DRAGON-AI's potential to substantially aid the manual ontology construction process. However, our results also underscore the importance of having expert curators and ontology editors drive the ontology generation process.</p>\",\"PeriodicalId\":15055,\"journal\":{\"name\":\"Journal of Biomedical Semantics\",\"volume\":\"15 1\",\"pages\":\"19\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11484368/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biomedical Semantics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1186/s13326-024-00320-3\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomedical Semantics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s13326-024-00320-3","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
Dynamic Retrieval Augmented Generation of Ontologies using Artificial Intelligence (DRAGON-AI).
Background: Ontologies are fundamental components of informatics infrastructure in domains such as biomedical, environmental, and food sciences, representing consensus knowledge in an accurate and computable form. However, their construction and maintenance demand substantial resources and necessitate substantial collaboration between domain experts, curators, and ontology experts. We present Dynamic Retrieval Augmented Generation of Ontologies using AI (DRAGON-AI), an ontology generation method employing Large Language Models (LLMs) and Retrieval Augmented Generation (RAG). DRAGON-AI can generate textual and logical ontology components, drawing from existing knowledge in multiple ontologies and unstructured text sources.
Results: We assessed performance of DRAGON-AI on de novo term construction across ten diverse ontologies, making use of extensive manual evaluation of results. Our method has high precision for relationship generation, but has slightly lower precision than from logic-based reasoning. Our method is also able to generate definitions deemed acceptable by expert evaluators, but these scored worse than human-authored definitions. Notably, evaluators with the highest level of confidence in a domain were better able to discern flaws in AI-generated definitions. We also demonstrated the ability of DRAGON-AI to incorporate natural language instructions in the form of GitHub issues.
Conclusions: These findings suggest DRAGON-AI's potential to substantially aid the manual ontology construction process. However, our results also underscore the importance of having expert curators and ontology editors drive the ontology generation process.
期刊介绍:
Journal of Biomedical Semantics addresses issues of semantic enrichment and semantic processing in the biomedical domain. The scope of the journal covers two main areas:
Infrastructure for biomedical semantics: focusing on semantic resources and repositories, meta-data management and resource description, knowledge representation and semantic frameworks, the Biomedical Semantic Web, and semantic interoperability.
Semantic mining, annotation, and analysis: focusing on approaches and applications of semantic resources; and tools for investigation, reasoning, prediction, and discoveries in biomedicine.