白三烯 B4 在糖尿病患者体内升高,并促进豚鼠室性心律失常的发生。

IF 4.5 2区 生物学 Q2 CELL BIOLOGY Journal of Cellular Physiology Pub Date : 2024-10-14 DOI:10.1002/jcp.31467
Andrea Corbin, Kelly A. Aromolaran, Ademuyiwa S. Aromolaran
{"title":"白三烯 B4 在糖尿病患者体内升高,并促进豚鼠室性心律失常的发生。","authors":"Andrea Corbin,&nbsp;Kelly A. Aromolaran,&nbsp;Ademuyiwa S. Aromolaran","doi":"10.1002/jcp.31467","DOIUrl":null,"url":null,"abstract":"<p>Diabetes (DM) patients have an increased risk (~50%) for sudden cardiac death (SCD), mostly as a result of ventricular arrhythmias. The molecular mechanisms involved remain partially defined. The potent proinflammatory lipid mediator leukotriene (LT) B4, is pathologically elevated in DM compared to nondiabetic patients, resulting in increased LTB4 accumulation in heart, leading to an increased risk for life-threatening proarrhythmic signatures. We used electrophysiology, immunofluorescence, and confocal microscopy approaches to evaluate LTB4 cellular effects in guinea pig heart and ventricular myocytes. We have observed that LTB4 is increased in multiple mouse models (C57BL/6 J/Lep<sup><i>ob/ob</i></sup> and PANIC-ATTAC) of DM, promotes profound cellular arrhythmogenesis (spontaneous beats and early after depolarizations, EADs), and severely depresses the rapidly activating delayed rectifier K current (hERG1/<i>I</i><sub><i>Kr</i></sub>) density in HEK293 cells and guinea pig ventricular myocytes. We have further found that guinea pigs challenged with LTB4 displayed a significantly prolonged QT interval, and that this can be prevented with LTB4R inhibition, suggesting that preventing such LTB4R effects may be therapeutically beneficial in DM. Our data suggests that a further elucidation of LTB4 vulnerable substrates, and how this leads to ventricular arrhythmias, is likely to lead to continued improvements in management options, and the development of new therapies for prevention of SCD in DM patients.</p>","PeriodicalId":15220,"journal":{"name":"Journal of Cellular Physiology","volume":"240 1","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11733858/pdf/","citationCount":"0","resultStr":"{\"title\":\"Leukotriene B4 is elevated in diabetes and promotes ventricular arrhythmogenesis in guinea pig\",\"authors\":\"Andrea Corbin,&nbsp;Kelly A. Aromolaran,&nbsp;Ademuyiwa S. Aromolaran\",\"doi\":\"10.1002/jcp.31467\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Diabetes (DM) patients have an increased risk (~50%) for sudden cardiac death (SCD), mostly as a result of ventricular arrhythmias. The molecular mechanisms involved remain partially defined. The potent proinflammatory lipid mediator leukotriene (LT) B4, is pathologically elevated in DM compared to nondiabetic patients, resulting in increased LTB4 accumulation in heart, leading to an increased risk for life-threatening proarrhythmic signatures. We used electrophysiology, immunofluorescence, and confocal microscopy approaches to evaluate LTB4 cellular effects in guinea pig heart and ventricular myocytes. We have observed that LTB4 is increased in multiple mouse models (C57BL/6 J/Lep<sup><i>ob/ob</i></sup> and PANIC-ATTAC) of DM, promotes profound cellular arrhythmogenesis (spontaneous beats and early after depolarizations, EADs), and severely depresses the rapidly activating delayed rectifier K current (hERG1/<i>I</i><sub><i>Kr</i></sub>) density in HEK293 cells and guinea pig ventricular myocytes. We have further found that guinea pigs challenged with LTB4 displayed a significantly prolonged QT interval, and that this can be prevented with LTB4R inhibition, suggesting that preventing such LTB4R effects may be therapeutically beneficial in DM. Our data suggests that a further elucidation of LTB4 vulnerable substrates, and how this leads to ventricular arrhythmias, is likely to lead to continued improvements in management options, and the development of new therapies for prevention of SCD in DM patients.</p>\",\"PeriodicalId\":15220,\"journal\":{\"name\":\"Journal of Cellular Physiology\",\"volume\":\"240 1\",\"pages\":\"\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2024-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11733858/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cellular Physiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jcp.31467\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cellular Physiology","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jcp.31467","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

糖尿病(DM)患者发生心脏性猝死(SCD)的风险增加(约为 50%),主要是由于室性心律失常。其中涉及的分子机制尚不完全清楚。与非糖尿病患者相比,强效促炎脂质介质白三烯(LT)B4 在糖尿病患者中病理性升高,导致 LTB4 在心脏中蓄积增加,从而增加了发生危及生命的促心律失常的风险。我们采用电生理学、免疫荧光和共聚焦显微镜方法评估了 LTB4 在豚鼠心脏和心室肌细胞中的细胞效应。我们观察到,LTB4 在多种 DM 小鼠模型(C57BL/6 J/Lepob/ob 和 PANIC-ATTAC)中都会升高,促进严重的细胞心律失常发生(自发搏动和早期去极化后 EADs),并严重抑制 HEK293 细胞和豚鼠心室肌细胞中快速激活的延迟整流 K 电流(hERG1/IKr)密度。我们进一步发现,豚鼠在接受 LTB4 挑战后会出现明显的 QT 间期延长,而抑制 LTB4R 可以防止这种情况的发生。我们的数据表明,进一步阐明 LTB4 易损底物及其如何导致室性心律失常,很可能会不断改进治疗方案,并开发出预防 DM 患者 SCD 的新疗法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Leukotriene B4 is elevated in diabetes and promotes ventricular arrhythmogenesis in guinea pig

Diabetes (DM) patients have an increased risk (~50%) for sudden cardiac death (SCD), mostly as a result of ventricular arrhythmias. The molecular mechanisms involved remain partially defined. The potent proinflammatory lipid mediator leukotriene (LT) B4, is pathologically elevated in DM compared to nondiabetic patients, resulting in increased LTB4 accumulation in heart, leading to an increased risk for life-threatening proarrhythmic signatures. We used electrophysiology, immunofluorescence, and confocal microscopy approaches to evaluate LTB4 cellular effects in guinea pig heart and ventricular myocytes. We have observed that LTB4 is increased in multiple mouse models (C57BL/6 J/Lepob/ob and PANIC-ATTAC) of DM, promotes profound cellular arrhythmogenesis (spontaneous beats and early after depolarizations, EADs), and severely depresses the rapidly activating delayed rectifier K current (hERG1/IKr) density in HEK293 cells and guinea pig ventricular myocytes. We have further found that guinea pigs challenged with LTB4 displayed a significantly prolonged QT interval, and that this can be prevented with LTB4R inhibition, suggesting that preventing such LTB4R effects may be therapeutically beneficial in DM. Our data suggests that a further elucidation of LTB4 vulnerable substrates, and how this leads to ventricular arrhythmias, is likely to lead to continued improvements in management options, and the development of new therapies for prevention of SCD in DM patients.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
14.70
自引率
0.00%
发文量
256
审稿时长
1 months
期刊介绍: The Journal of Cellular Physiology publishes reports of high biological significance in areas of eukaryotic cell biology and physiology, focusing on those articles that adopt a molecular mechanistic approach to investigate cell structure and function. There is appreciation for the application of cellular, biochemical, molecular and in vivo genetic approaches, as well as the power of genomics, proteomics, bioinformatics and systems biology. In particular, the Journal encourages submission of high-interest papers investigating the genetic and epigenetic regulation of proliferation and phenotype as well as cell fate and lineage commitment by growth factors, cytokines and their cognate receptors and signal transduction pathways that influence the expression, integration and activities of these physiological mediators. Similarly, the Journal encourages submission of manuscripts exploring the regulation of growth and differentiation by cell adhesion molecules in addition to the interplay between these processes and those induced by growth factors and cytokines. Studies on the genes and processes that regulate cell cycle progression and phase transition in eukaryotic cells, and the mechanisms that determine whether cells enter quiescence, proliferate or undergo apoptosis are also welcomed. Submission of papers that address contributions of the extracellular matrix to cellular phenotypes and physiological control as well as regulatory mechanisms governing fertilization, embryogenesis, gametogenesis, cell fate, lineage commitment, differentiation, development and dynamic parameters of cell motility are encouraged. Finally, the investigation of stem cells and changes that differentiate cancer cells from normal cells including studies on the properties and functions of oncogenes and tumor suppressor genes will remain as one of the major interests of the Journal.
期刊最新文献
Issue Information Unraveling pH Regulation of TMEM175, an Endolysosomal Cation Channel With a Role in Parkinson's Disease Carboxyl Terminal Modulator Protein Induces Cell Senescence and Is Upregulated With Aging by Zic2 in Rats RETRACTION: Promotion of Cell Autophagy and Apoptosis in Cervical Cancer by Inhibition of Long Noncoding RNA LINC00511 via Transcription Factor RXRA-regulated PLD1 RETRACTION: Role of Mirnas in Lung Cancer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1