{"title":"探索多组分过冷液体动力学和结构动力学相关性中的软针效应。","authors":"Ehtesham Anwar, Palak Patel, Mohit Sharma, Sarika Maitra Bhattacharyya","doi":"10.1063/5.0230932","DOIUrl":null,"url":null,"abstract":"<p><p>We study multicomponent liquids by increasing the mass of 15% of the particles in a binary Kob-Andersen model. We find that the heavy particles have dual effects on the lighter particles. At higher temperatures, there is a significant decoupling of the dynamics between heavier and lighter particles, with the former resembling a pinned particle to the latter. The dynamics of the lighter particles slow down due to the excluded volume around the nearly immobile heavier particles. Conversely, at lower temperatures, there is a coupling between the dynamics of the heavier and lighter particles. The heavier particles' mass slows down the dynamics of both types of particles. This makes the soft pinning effect of the heavy particles questionable in this regime. We demonstrate that as the mass of the heavy particles increases, the coupling of the dynamics between the lighter and heavier particles weakens. Consequently, the heavier the mass of the heavy particles, the more effectively they act as soft pinning centers in both high and low-temperature regimes. A key finding is that akin to the pinned system, the self-dynamics and collective dynamics of the lighter particles decouple from each other as the mass of the heavy particles has a more pronounced impact on the latter. We analyze the structure-dynamics correlation by considering the system under the binary and modified quaternary framework, the latter describing the pinned system. Our findings indicate that whenever the heavy mass particles function as soft pinning centers, the modified quaternary framework predicts a higher correlation.</p>","PeriodicalId":15313,"journal":{"name":"Journal of Chemical Physics","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring the soft pinning effect in the dynamics and the structure-dynamics correlation in multicomponent supercooled liquids.\",\"authors\":\"Ehtesham Anwar, Palak Patel, Mohit Sharma, Sarika Maitra Bhattacharyya\",\"doi\":\"10.1063/5.0230932\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We study multicomponent liquids by increasing the mass of 15% of the particles in a binary Kob-Andersen model. We find that the heavy particles have dual effects on the lighter particles. At higher temperatures, there is a significant decoupling of the dynamics between heavier and lighter particles, with the former resembling a pinned particle to the latter. The dynamics of the lighter particles slow down due to the excluded volume around the nearly immobile heavier particles. Conversely, at lower temperatures, there is a coupling between the dynamics of the heavier and lighter particles. The heavier particles' mass slows down the dynamics of both types of particles. This makes the soft pinning effect of the heavy particles questionable in this regime. We demonstrate that as the mass of the heavy particles increases, the coupling of the dynamics between the lighter and heavier particles weakens. Consequently, the heavier the mass of the heavy particles, the more effectively they act as soft pinning centers in both high and low-temperature regimes. A key finding is that akin to the pinned system, the self-dynamics and collective dynamics of the lighter particles decouple from each other as the mass of the heavy particles has a more pronounced impact on the latter. We analyze the structure-dynamics correlation by considering the system under the binary and modified quaternary framework, the latter describing the pinned system. Our findings indicate that whenever the heavy mass particles function as soft pinning centers, the modified quaternary framework predicts a higher correlation.</p>\",\"PeriodicalId\":15313,\"journal\":{\"name\":\"Journal of Chemical Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemical Physics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0230932\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1063/5.0230932","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Exploring the soft pinning effect in the dynamics and the structure-dynamics correlation in multicomponent supercooled liquids.
We study multicomponent liquids by increasing the mass of 15% of the particles in a binary Kob-Andersen model. We find that the heavy particles have dual effects on the lighter particles. At higher temperatures, there is a significant decoupling of the dynamics between heavier and lighter particles, with the former resembling a pinned particle to the latter. The dynamics of the lighter particles slow down due to the excluded volume around the nearly immobile heavier particles. Conversely, at lower temperatures, there is a coupling between the dynamics of the heavier and lighter particles. The heavier particles' mass slows down the dynamics of both types of particles. This makes the soft pinning effect of the heavy particles questionable in this regime. We demonstrate that as the mass of the heavy particles increases, the coupling of the dynamics between the lighter and heavier particles weakens. Consequently, the heavier the mass of the heavy particles, the more effectively they act as soft pinning centers in both high and low-temperature regimes. A key finding is that akin to the pinned system, the self-dynamics and collective dynamics of the lighter particles decouple from each other as the mass of the heavy particles has a more pronounced impact on the latter. We analyze the structure-dynamics correlation by considering the system under the binary and modified quaternary framework, the latter describing the pinned system. Our findings indicate that whenever the heavy mass particles function as soft pinning centers, the modified quaternary framework predicts a higher correlation.
期刊介绍:
The Journal of Chemical Physics publishes quantitative and rigorous science of long-lasting value in methods and applications of chemical physics. The Journal also publishes brief Communications of significant new findings, Perspectives on the latest advances in the field, and Special Topic issues. The Journal focuses on innovative research in experimental and theoretical areas of chemical physics, including spectroscopy, dynamics, kinetics, statistical mechanics, and quantum mechanics. In addition, topical areas such as polymers, soft matter, materials, surfaces/interfaces, and systems of biological relevance are of increasing importance.
Topical coverage includes:
Theoretical Methods and Algorithms
Advanced Experimental Techniques
Atoms, Molecules, and Clusters
Liquids, Glasses, and Crystals
Surfaces, Interfaces, and Materials
Polymers and Soft Matter
Biological Molecules and Networks.