{"title":"改性硅酸钠玻璃的导热性受模态相变的影响。","authors":"Philip Rasmussen, Søren S Sørensen","doi":"10.1063/5.0230354","DOIUrl":null,"url":null,"abstract":"<p><p>The thermal conductivity of glasses is well-known to be significantly harder to theoretically describe compared to crystalline materials. Because of this fact, the fundamental understanding of thermal conductivity in glasses remain extremely poor when moving beyond the case of simple glasses, e.g., glassy SiO2, and into so-called \"modified\" oxide glasses, that is, glasses where other oxides (e.g., alkali oxides) have been added to break up the network and alter, e.g., elastic and thermal properties. This lack of knowledge is apparent despite how modified glasses comprise the far majority of known glasses. In the present work, we study an archetypical series of sodium silicate [xNa2O-(100 - x)SiO2] glasses. Analyses of modal contributions reveal how increasing Na2O content induces increasing vibrational localization with a change of vibrations to be less ordered and a related general decrease in modal contributions to thermal conductivity. We find the vibrational phases (acoustic vs optical) of sodium vibrations to be relatively disordered compared to the network-forming silicon and oxygen species, explaining how increasing Na2O content decreases thermal conductivity. Our work sheds new light on the fundamentals of glassy heat transfer as well as the interplay between thermal conduction and modal characteristics in glasses.</p>","PeriodicalId":15313,"journal":{"name":"Journal of Chemical Physics","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermal conductivity in modified sodium silicate glasses is governed by modal phase changes.\",\"authors\":\"Philip Rasmussen, Søren S Sørensen\",\"doi\":\"10.1063/5.0230354\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The thermal conductivity of glasses is well-known to be significantly harder to theoretically describe compared to crystalline materials. Because of this fact, the fundamental understanding of thermal conductivity in glasses remain extremely poor when moving beyond the case of simple glasses, e.g., glassy SiO2, and into so-called \\\"modified\\\" oxide glasses, that is, glasses where other oxides (e.g., alkali oxides) have been added to break up the network and alter, e.g., elastic and thermal properties. This lack of knowledge is apparent despite how modified glasses comprise the far majority of known glasses. In the present work, we study an archetypical series of sodium silicate [xNa2O-(100 - x)SiO2] glasses. Analyses of modal contributions reveal how increasing Na2O content induces increasing vibrational localization with a change of vibrations to be less ordered and a related general decrease in modal contributions to thermal conductivity. We find the vibrational phases (acoustic vs optical) of sodium vibrations to be relatively disordered compared to the network-forming silicon and oxygen species, explaining how increasing Na2O content decreases thermal conductivity. Our work sheds new light on the fundamentals of glassy heat transfer as well as the interplay between thermal conduction and modal characteristics in glasses.</p>\",\"PeriodicalId\":15313,\"journal\":{\"name\":\"Journal of Chemical Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemical Physics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0230354\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1063/5.0230354","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Thermal conductivity in modified sodium silicate glasses is governed by modal phase changes.
The thermal conductivity of glasses is well-known to be significantly harder to theoretically describe compared to crystalline materials. Because of this fact, the fundamental understanding of thermal conductivity in glasses remain extremely poor when moving beyond the case of simple glasses, e.g., glassy SiO2, and into so-called "modified" oxide glasses, that is, glasses where other oxides (e.g., alkali oxides) have been added to break up the network and alter, e.g., elastic and thermal properties. This lack of knowledge is apparent despite how modified glasses comprise the far majority of known glasses. In the present work, we study an archetypical series of sodium silicate [xNa2O-(100 - x)SiO2] glasses. Analyses of modal contributions reveal how increasing Na2O content induces increasing vibrational localization with a change of vibrations to be less ordered and a related general decrease in modal contributions to thermal conductivity. We find the vibrational phases (acoustic vs optical) of sodium vibrations to be relatively disordered compared to the network-forming silicon and oxygen species, explaining how increasing Na2O content decreases thermal conductivity. Our work sheds new light on the fundamentals of glassy heat transfer as well as the interplay between thermal conduction and modal characteristics in glasses.
期刊介绍:
The Journal of Chemical Physics publishes quantitative and rigorous science of long-lasting value in methods and applications of chemical physics. The Journal also publishes brief Communications of significant new findings, Perspectives on the latest advances in the field, and Special Topic issues. The Journal focuses on innovative research in experimental and theoretical areas of chemical physics, including spectroscopy, dynamics, kinetics, statistical mechanics, and quantum mechanics. In addition, topical areas such as polymers, soft matter, materials, surfaces/interfaces, and systems of biological relevance are of increasing importance.
Topical coverage includes:
Theoretical Methods and Algorithms
Advanced Experimental Techniques
Atoms, Molecules, and Clusters
Liquids, Glasses, and Crystals
Surfaces, Interfaces, and Materials
Polymers and Soft Matter
Biological Molecules and Networks.