涡流辅助分散低密度液-液微萃取加工薯片和水样中的黄腐醇衍生丙烯酰胺,用于气相色谱分析。

IF 1.4 4区 农林科学 Q4 ENVIRONMENTAL SCIENCES Journal of Environmental Science and Health Part B-pesticides Food Contaminants and Agricultural Wastes Pub Date : 2024-01-01 Epub Date: 2024-10-17 DOI:10.1080/03601234.2024.2416333
Anuwat Ratsamisomsi, Chookiat Khongsiri, Prapin Wilairat, Warawut Tiyapongpattana
{"title":"涡流辅助分散低密度液-液微萃取加工薯片和水样中的黄腐醇衍生丙烯酰胺,用于气相色谱分析。","authors":"Anuwat Ratsamisomsi, Chookiat Khongsiri, Prapin Wilairat, Warawut Tiyapongpattana","doi":"10.1080/03601234.2024.2416333","DOIUrl":null,"url":null,"abstract":"<p><p>Acrylamide, a probable human carcinogen present in heat-processed foods and environmental contaminants, requires sample extraction and preconcentration before chromatographic analysis. The method developed in this study employed derivatization with xanthydrol and dispersive liquid-liquid microextraction utilizing low-density anisole. Durian or potato chips were combined with deionized water, defatted with hexane, and subjected to precipitation of soluble carbohydrates and proteins using clarification reagents. Water samples were filtered through a membrane filter. Acrylamide was derivatized by introducing an acidic methanolic solution of xanthydrol at 50 °C. The derivatized acrylamide was extracted with 70 µL of anisole and vortexed, with the methanol from the xanthydrol solution serving as the disperser solvent. The anisole layer was analyzed using gas chromatography with both flame ionization and mass spectrometric detection. Linear calibration plots exhibited coefficients of determination >0.9997. The precision was measured at <10% RSD, and recoveries ranged from 84% to 107%. The quantitation limit varied from 2 to 10 µg kg<sup>-1</sup> for processed chips and from 0.05 to 0.10 µg L<sup>-1</sup> for water samples. Acrylamide was detected in all processed chip samples, with some concentrations exceeding the benchmark value of 750 μg kg<sup>-1</sup>. However, no acrylamide was identified in any of the water samples.</p>","PeriodicalId":15720,"journal":{"name":"Journal of Environmental Science and Health Part B-pesticides Food Contaminants and Agricultural Wastes","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Vortex-assisted dispersive low-density liquid-liquid microextraction of xanthydrol derivatized acrylamide in processed chips and water samples for gas chromatographic analysis.\",\"authors\":\"Anuwat Ratsamisomsi, Chookiat Khongsiri, Prapin Wilairat, Warawut Tiyapongpattana\",\"doi\":\"10.1080/03601234.2024.2416333\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Acrylamide, a probable human carcinogen present in heat-processed foods and environmental contaminants, requires sample extraction and preconcentration before chromatographic analysis. The method developed in this study employed derivatization with xanthydrol and dispersive liquid-liquid microextraction utilizing low-density anisole. Durian or potato chips were combined with deionized water, defatted with hexane, and subjected to precipitation of soluble carbohydrates and proteins using clarification reagents. Water samples were filtered through a membrane filter. Acrylamide was derivatized by introducing an acidic methanolic solution of xanthydrol at 50 °C. The derivatized acrylamide was extracted with 70 µL of anisole and vortexed, with the methanol from the xanthydrol solution serving as the disperser solvent. The anisole layer was analyzed using gas chromatography with both flame ionization and mass spectrometric detection. Linear calibration plots exhibited coefficients of determination >0.9997. The precision was measured at <10% RSD, and recoveries ranged from 84% to 107%. The quantitation limit varied from 2 to 10 µg kg<sup>-1</sup> for processed chips and from 0.05 to 0.10 µg L<sup>-1</sup> for water samples. Acrylamide was detected in all processed chip samples, with some concentrations exceeding the benchmark value of 750 μg kg<sup>-1</sup>. However, no acrylamide was identified in any of the water samples.</p>\",\"PeriodicalId\":15720,\"journal\":{\"name\":\"Journal of Environmental Science and Health Part B-pesticides Food Contaminants and Agricultural Wastes\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Environmental Science and Health Part B-pesticides Food Contaminants and Agricultural Wastes\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1080/03601234.2024.2416333\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/17 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Science and Health Part B-pesticides Food Contaminants and Agricultural Wastes","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1080/03601234.2024.2416333","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/17 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

丙烯酰胺是一种可能致癌的物质,存在于热加工食品和环境污染物中,在进行色谱分析之前需要对样品进行提取和预浓缩。本研究开发的方法采用了黄原酸衍生化技术和低密度苯甲醚分散液-液微萃取技术。将榴莲或薯片与去离子水混合,用正己烷脱脂,并使用澄清试剂沉淀可溶性碳水化合物和蛋白质。水样经膜过滤器过滤。在 50 °C下引入黄腐醇的酸性甲醇溶液,对丙烯酰胺进行衍生。用 70 µL 的苯甲醚萃取衍生化的丙烯酰胺,然后涡旋,用黄原醇溶液中的甲醇作为分散溶剂。使用火焰离子化和质谱检测的气相色谱法对苯甲醚层进行分析。线性校准图显示测定系数大于 0.9997。加工薯片的精确度为-1,水样的精确度为 0.05 至 0.10 µg L-1。在所有加工过的薯片样品中都检测到了丙烯酰胺,其中一些浓度超过了 750 微克/千克的基准值。不過,所有水樣本均沒有驗出丙烯酰胺。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Vortex-assisted dispersive low-density liquid-liquid microextraction of xanthydrol derivatized acrylamide in processed chips and water samples for gas chromatographic analysis.

Acrylamide, a probable human carcinogen present in heat-processed foods and environmental contaminants, requires sample extraction and preconcentration before chromatographic analysis. The method developed in this study employed derivatization with xanthydrol and dispersive liquid-liquid microextraction utilizing low-density anisole. Durian or potato chips were combined with deionized water, defatted with hexane, and subjected to precipitation of soluble carbohydrates and proteins using clarification reagents. Water samples were filtered through a membrane filter. Acrylamide was derivatized by introducing an acidic methanolic solution of xanthydrol at 50 °C. The derivatized acrylamide was extracted with 70 µL of anisole and vortexed, with the methanol from the xanthydrol solution serving as the disperser solvent. The anisole layer was analyzed using gas chromatography with both flame ionization and mass spectrometric detection. Linear calibration plots exhibited coefficients of determination >0.9997. The precision was measured at <10% RSD, and recoveries ranged from 84% to 107%. The quantitation limit varied from 2 to 10 µg kg-1 for processed chips and from 0.05 to 0.10 µg L-1 for water samples. Acrylamide was detected in all processed chip samples, with some concentrations exceeding the benchmark value of 750 μg kg-1. However, no acrylamide was identified in any of the water samples.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.00
自引率
5.00%
发文量
87
审稿时长
1 months
期刊介绍: 12 issues per year Abstracted/indexed in: Agricola; Analytical Abstracts; ASFA 3: Aquatic Pollution & Environmental Quality; BioSciences Information Service of Biological Abstracts (BIOSIS); CAB Abstracts; CAB AGBiotech News and Information; CAB Irrigation & Drainage Abstracts; CAB Soils & Fertilizers Abstracts; Chemical Abstracts Service Plus; CSA Aluminum Industry Abstracts; CSA ANTE: Abstracts in New Technology and Engineering; CSA ASFA 3 Aquatic Pollution and Environmental Quality; CSA ASSIA: Applied Social Sciences Index & Abstracts; CSA Ecology Abstracts; CSA Entomology Abstracts; CSA Environmental Engineering Abstracts; CSA Health & Safety Science Abstracts; CSA Pollution Abstracts; CSA Toxicology Abstracts; CSA Water Resource Abstracts; EBSCOhost Online Research Databases; Elsevier BIOBASE/Current Awareness in Biological Sciences; Elsevier Engineering Information: EMBASE/Excerpta Medica/ Engineering Index/COMPENDEX PLUS; Environment Abstracts; Environmental Knowledge; Food Science and Technology Abstracts; Geo Abstracts; Geobase; Food Science; Index Medicus/ MEDLINE; INIST-Pascal/ CNRS; NIOSHTIC; ISI BIOSIS Previews; Pesticides; Food Contaminants and Agricultural Wastes: Analytical Abstracts; Pollution Abstracts; PubSCIENCE; Reference Update; Research Alert; Science Citation Index Expanded (SCIE); and Water Resources Abstracts.
期刊最新文献
Root exudation of glyphosate in Eucalyptus urophylla S.T. Blake. Occurrence of organotin compounds in food: increasing challenge of phenyltin compounds. Prospects for application of microorganisms in bioremediation of soils contaminated with pesticides. Synthesis of CoWO4/g-C3N4 Z-scheme heterojunction for the efficient photodegradation of diazinon with the addition of H2O2. Concentrations, distribution, and key influencing factors of antibiotic resistance genes and bacterial community in water and reared fish tissues in a typical tilapia farm in South China.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1