Héctor M Iga-Buitrón, Tom G Mackay, Akhlesh Lakhtakia
{"title":"对由截头球和球体组成的微粒复合材料进行布鲁格曼均质化。","authors":"Héctor M Iga-Buitrón, Tom G Mackay, Akhlesh Lakhtakia","doi":"10.1088/1361-648X/ad899c","DOIUrl":null,"url":null,"abstract":"<p><p>Closed-form expressions were established for depolarization dyadics for a truncated sphere and a truncated spheroid, both electrically small, immersed in a uniaxial dielectric ambient medium. These depolarization dyadics were used to develop the Bruggeman homogenization formalism to predict the relative permittivity dyadic of a homogenized composite material (HCM) arising from a randomly distributed mixture of oriented particles shaped as truncated spheres and spheroids. Unlike other homogenization formalisms, most notably the Maxwell Garnett formalism, the Bruggeman formalism is not restricted to composites containing dilute volume fractions of constituent particles. Numerical investigations highlighted the anisotropy of the HCM and its relation to the shapes of the constituent particles and their volume fractions. Specifically, greater degrees of HCM anisotropy arise from constituent particles whose shapes deviate more from spherical, especially for mid-range volume fractions.</p>","PeriodicalId":16776,"journal":{"name":"Journal of Physics: Condensed Matter","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bruggeman homogenization of a particulate composite material comprising truncated spheres and spheroids.\",\"authors\":\"Héctor M Iga-Buitrón, Tom G Mackay, Akhlesh Lakhtakia\",\"doi\":\"10.1088/1361-648X/ad899c\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Closed-form expressions were established for depolarization dyadics for a truncated sphere and a truncated spheroid, both electrically small, immersed in a uniaxial dielectric ambient medium. These depolarization dyadics were used to develop the Bruggeman homogenization formalism to predict the relative permittivity dyadic of a homogenized composite material (HCM) arising from a randomly distributed mixture of oriented particles shaped as truncated spheres and spheroids. Unlike other homogenization formalisms, most notably the Maxwell Garnett formalism, the Bruggeman formalism is not restricted to composites containing dilute volume fractions of constituent particles. Numerical investigations highlighted the anisotropy of the HCM and its relation to the shapes of the constituent particles and their volume fractions. Specifically, greater degrees of HCM anisotropy arise from constituent particles whose shapes deviate more from spherical, especially for mid-range volume fractions.</p>\",\"PeriodicalId\":16776,\"journal\":{\"name\":\"Journal of Physics: Condensed Matter\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics: Condensed Matter\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-648X/ad899c\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics: Condensed Matter","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-648X/ad899c","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
Bruggeman homogenization of a particulate composite material comprising truncated spheres and spheroids.
Closed-form expressions were established for depolarization dyadics for a truncated sphere and a truncated spheroid, both electrically small, immersed in a uniaxial dielectric ambient medium. These depolarization dyadics were used to develop the Bruggeman homogenization formalism to predict the relative permittivity dyadic of a homogenized composite material (HCM) arising from a randomly distributed mixture of oriented particles shaped as truncated spheres and spheroids. Unlike other homogenization formalisms, most notably the Maxwell Garnett formalism, the Bruggeman formalism is not restricted to composites containing dilute volume fractions of constituent particles. Numerical investigations highlighted the anisotropy of the HCM and its relation to the shapes of the constituent particles and their volume fractions. Specifically, greater degrees of HCM anisotropy arise from constituent particles whose shapes deviate more from spherical, especially for mid-range volume fractions.
期刊介绍:
Journal of Physics: Condensed Matter covers the whole of condensed matter physics including soft condensed matter and nanostructures. Papers may report experimental, theoretical and simulation studies. Note that papers must contain fundamental condensed matter science: papers reporting methods of materials preparation or properties of materials without novel condensed matter content will not be accepted.