Jiaqi Li , Zengjie Jiang , Meng Zhang , Xin Sun , Minghui Jiao , Jiamin Li , Suyan Xue , Ang Li , Longzhen Liu , Ling Zhu , Yuze Mao
{"title":"大规模牡蛎养殖加速了桑沟湾海水中溶解无机碳的去除。","authors":"Jiaqi Li , Zengjie Jiang , Meng Zhang , Xin Sun , Minghui Jiao , Jiamin Li , Suyan Xue , Ang Li , Longzhen Liu , Ling Zhu , Yuze Mao","doi":"10.1016/j.marenvres.2024.106798","DOIUrl":null,"url":null,"abstract":"<div><div>While the direct impact of oyster calcification and respiration on the seawater inorganic carbon system is well-acknowledged, their indirect effect through filter feeding activities remains unclear. Here we studied the impact of large-scale oyster farming on the removal of dissolved inorganic carbon (DIC) from seawater. Field investigations showed that the DIC level in the oyster farming area in Sanggou Bay, China were significantly lower than that in the non-farming area. In-lab incubation showed that regardless of whether incubated in high or low-transparent environments, the DIC removal rate of seawater from the oyster farming area was significantly higher than that of the non-farming area. These results indicate that cultivated oysters facilitate the removal of seawater DIC in the farming area. To reveal the indirect effect of filter feeding activities on DIC removal, we used 6-m<sup>3</sup> ponds to simulate the oyster-farming environment. Results showed that the average DIC level of the oyster-cultivating groups was 105.83 μmol/kg lower than that of the control groups (without of oyster) after a six-day cultivation. Surprisingly, the average concentration of Chl-a in oyster-cultivating groups was significantly higher than that of the control group at the end of the experiment. Similarly, DIC level declined faster while Chl-a concentration increased faster in seawater that previously experienced 12~20 h of oyster cultivation than that in the control seawater. It was noticed that the transparency of seawater within 6-m<sup>3</sup> ponds increased significantly just after hours of oyster cultivation. This enhanced transparency created a favorable light environment that supported phytoplankton photosynthesis and simultaneously accelerated the DIC removal rate. Overall, oysters not only remove the inorganic carbon in the seawater through calcification but also create a suitable environment for phytoplankton photosynthesis through their filtering activity, and subsequently accelerating the removal of inorganic carbon in the seawater of the oyster farming area.</div></div>","PeriodicalId":18204,"journal":{"name":"Marine environmental research","volume":"202 ","pages":"Article 106798"},"PeriodicalIF":3.0000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Large-scale oyster farming accelerates the removal of dissolved inorganic carbon from seawater in Sanggou Bay\",\"authors\":\"Jiaqi Li , Zengjie Jiang , Meng Zhang , Xin Sun , Minghui Jiao , Jiamin Li , Suyan Xue , Ang Li , Longzhen Liu , Ling Zhu , Yuze Mao\",\"doi\":\"10.1016/j.marenvres.2024.106798\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>While the direct impact of oyster calcification and respiration on the seawater inorganic carbon system is well-acknowledged, their indirect effect through filter feeding activities remains unclear. Here we studied the impact of large-scale oyster farming on the removal of dissolved inorganic carbon (DIC) from seawater. Field investigations showed that the DIC level in the oyster farming area in Sanggou Bay, China were significantly lower than that in the non-farming area. In-lab incubation showed that regardless of whether incubated in high or low-transparent environments, the DIC removal rate of seawater from the oyster farming area was significantly higher than that of the non-farming area. These results indicate that cultivated oysters facilitate the removal of seawater DIC in the farming area. To reveal the indirect effect of filter feeding activities on DIC removal, we used 6-m<sup>3</sup> ponds to simulate the oyster-farming environment. Results showed that the average DIC level of the oyster-cultivating groups was 105.83 μmol/kg lower than that of the control groups (without of oyster) after a six-day cultivation. Surprisingly, the average concentration of Chl-a in oyster-cultivating groups was significantly higher than that of the control group at the end of the experiment. Similarly, DIC level declined faster while Chl-a concentration increased faster in seawater that previously experienced 12~20 h of oyster cultivation than that in the control seawater. It was noticed that the transparency of seawater within 6-m<sup>3</sup> ponds increased significantly just after hours of oyster cultivation. This enhanced transparency created a favorable light environment that supported phytoplankton photosynthesis and simultaneously accelerated the DIC removal rate. Overall, oysters not only remove the inorganic carbon in the seawater through calcification but also create a suitable environment for phytoplankton photosynthesis through their filtering activity, and subsequently accelerating the removal of inorganic carbon in the seawater of the oyster farming area.</div></div>\",\"PeriodicalId\":18204,\"journal\":{\"name\":\"Marine environmental research\",\"volume\":\"202 \",\"pages\":\"Article 106798\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Marine environmental research\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0141113624004598\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine environmental research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141113624004598","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Large-scale oyster farming accelerates the removal of dissolved inorganic carbon from seawater in Sanggou Bay
While the direct impact of oyster calcification and respiration on the seawater inorganic carbon system is well-acknowledged, their indirect effect through filter feeding activities remains unclear. Here we studied the impact of large-scale oyster farming on the removal of dissolved inorganic carbon (DIC) from seawater. Field investigations showed that the DIC level in the oyster farming area in Sanggou Bay, China were significantly lower than that in the non-farming area. In-lab incubation showed that regardless of whether incubated in high or low-transparent environments, the DIC removal rate of seawater from the oyster farming area was significantly higher than that of the non-farming area. These results indicate that cultivated oysters facilitate the removal of seawater DIC in the farming area. To reveal the indirect effect of filter feeding activities on DIC removal, we used 6-m3 ponds to simulate the oyster-farming environment. Results showed that the average DIC level of the oyster-cultivating groups was 105.83 μmol/kg lower than that of the control groups (without of oyster) after a six-day cultivation. Surprisingly, the average concentration of Chl-a in oyster-cultivating groups was significantly higher than that of the control group at the end of the experiment. Similarly, DIC level declined faster while Chl-a concentration increased faster in seawater that previously experienced 12~20 h of oyster cultivation than that in the control seawater. It was noticed that the transparency of seawater within 6-m3 ponds increased significantly just after hours of oyster cultivation. This enhanced transparency created a favorable light environment that supported phytoplankton photosynthesis and simultaneously accelerated the DIC removal rate. Overall, oysters not only remove the inorganic carbon in the seawater through calcification but also create a suitable environment for phytoplankton photosynthesis through their filtering activity, and subsequently accelerating the removal of inorganic carbon in the seawater of the oyster farming area.
期刊介绍:
Marine Environmental Research publishes original research papers on chemical, physical, and biological interactions in the oceans and coastal waters. The journal serves as a forum for new information on biology, chemistry, and toxicology and syntheses that advance understanding of marine environmental processes.
Submission of multidisciplinary studies is encouraged. Studies that utilize experimental approaches to clarify the roles of anthropogenic and natural causes of changes in marine ecosystems are especially welcome, as are those studies that represent new developments of a theoretical or conceptual aspect of marine science. All papers published in this journal are reviewed by qualified peers prior to acceptance and publication. Examples of topics considered to be appropriate for the journal include, but are not limited to, the following:
– The extent, persistence, and consequences of change and the recovery from such change in natural marine systems
– The biochemical, physiological, and ecological consequences of contaminants to marine organisms and ecosystems
– The biogeochemistry of naturally occurring and anthropogenic substances
– Models that describe and predict the above processes
– Monitoring studies, to the extent that their results provide new information on functional processes
– Methodological papers describing improved quantitative techniques for the marine sciences.