基于氧化镍的反相金属卤化物包晶太阳能电池中的 V OC 损耗。

IF 5.2 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Materials Advances Pub Date : 2024-10-14 DOI:10.1039/D4MA00873A
Kousumi Mukherjee, Denise Kreugel, Nga Phung, Cristian van Helvoirt, Valerio Zardetto and Mariadriana Creatore
{"title":"基于氧化镍的反相金属卤化物包晶太阳能电池中的 V OC 损耗。","authors":"Kousumi Mukherjee, Denise Kreugel, Nga Phung, Cristian van Helvoirt, Valerio Zardetto and Mariadriana Creatore","doi":"10.1039/D4MA00873A","DOIUrl":null,"url":null,"abstract":"<p >Recent reports have shown that nickel oxide (NiO) when adopted as a hole transport layer (HTL) in combination with organic layers, such as PTAA or self-assembled monolayers (SAMs), leads to a higher device yield for both single junction as well as tandem devices. Nevertheless, implementing NiO in devices without PTAA or SAM is seldom reported to lead to high-performance devices. In this work, we assess the effect of key NiO properties deemed relevant in literature, namely- resistivity and surface energy, on the device performance and systematically compare the NiO-based devices with those based on PTAA. To this purpose, (thermal) atomic layer deposited (ALD) NiO (NiO<small><sub>Bu-MeAMD</sub></small>), Al-doped NiO (Al:NiO<small><sub>Bu-MeAMD</sub></small>), and plasma-assisted ALD NiO (NiO<small><sub>MeCp</sub></small>) films, characterized by a wide range of resistivity, are investigated. Although Al:NiO<small><sub>Bu-MeAMD</sub></small> (∼400 Ω cm) and NiO<small><sub>MeCp</sub></small>(∼80 Ωcm) films have a lower resistivity than NiO<small><sub>Bu-MeAMD</sub></small> (∼10 kΩ cm), the Al:NiO<small><sub>Bu-MeAMD</sub></small> and NiO<small><sub>MeCp</sub></small>-based devices are found to have a modest open circuit voltage (<em>V</em><small><sub>OC</sub></small>) gain of ∼30 mV compared to NiO<small><sub>Bu-MeAMD</sub></small>-based devices. Overall, the best-performing NiO-based devices (∼14.8% power conversion efficiency (PCE)) still lag behind the PTAA-based devices (∼17.5%), primarily due to a <em>V</em><small><sub>OC</sub></small> loss of ∼100 mV. Further investigation based on light intensity analysis of the <em>V</em><small><sub>OC</sub></small> and FF and the decrease in <em>V</em><small><sub>OC</sub></small> compared to the quasi-Fermi level splitting (QFLS) indicates that the <em>V</em><small><sub>OC</sub></small> is limited by trap-assisted recombination at the NiO/perovskite interface. Additionally, SCAPS simulations show that the presence of a high interfacial trap density leads to a <em>V</em><small><sub>OC</sub></small> loss in NiO-based devices. Upon passivation of the NiO/perovskite interface with Me-4PACz, the <em>V</em><small><sub>OC</sub></small> increases by 170–200 mV and is similar for NiO<small><sub>Bu-MeAMD</sub></small> and Al:NiO<small><sub>Bu-MeAMD</sub></small>, leading to the conclusion that there is no influence of the NiO resistivity on the <em>V</em><small><sub>OC</sub></small> once interface passivation is realized. Finally, our work highlights the necessity of comparing NiO-based devices with state-of-the-art HTL-based devices to draw conclusion about the influence of specific material properties on device performance.</p>","PeriodicalId":18242,"journal":{"name":"Materials Advances","volume":" 21","pages":" 8652-8664"},"PeriodicalIF":5.2000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11472218/pdf/","citationCount":"0","resultStr":"{\"title\":\"On the VOC loss in NiO-based inverted metal halide perovskite solar cells†\",\"authors\":\"Kousumi Mukherjee, Denise Kreugel, Nga Phung, Cristian van Helvoirt, Valerio Zardetto and Mariadriana Creatore\",\"doi\":\"10.1039/D4MA00873A\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Recent reports have shown that nickel oxide (NiO) when adopted as a hole transport layer (HTL) in combination with organic layers, such as PTAA or self-assembled monolayers (SAMs), leads to a higher device yield for both single junction as well as tandem devices. Nevertheless, implementing NiO in devices without PTAA or SAM is seldom reported to lead to high-performance devices. In this work, we assess the effect of key NiO properties deemed relevant in literature, namely- resistivity and surface energy, on the device performance and systematically compare the NiO-based devices with those based on PTAA. To this purpose, (thermal) atomic layer deposited (ALD) NiO (NiO<small><sub>Bu-MeAMD</sub></small>), Al-doped NiO (Al:NiO<small><sub>Bu-MeAMD</sub></small>), and plasma-assisted ALD NiO (NiO<small><sub>MeCp</sub></small>) films, characterized by a wide range of resistivity, are investigated. Although Al:NiO<small><sub>Bu-MeAMD</sub></small> (∼400 Ω cm) and NiO<small><sub>MeCp</sub></small>(∼80 Ωcm) films have a lower resistivity than NiO<small><sub>Bu-MeAMD</sub></small> (∼10 kΩ cm), the Al:NiO<small><sub>Bu-MeAMD</sub></small> and NiO<small><sub>MeCp</sub></small>-based devices are found to have a modest open circuit voltage (<em>V</em><small><sub>OC</sub></small>) gain of ∼30 mV compared to NiO<small><sub>Bu-MeAMD</sub></small>-based devices. Overall, the best-performing NiO-based devices (∼14.8% power conversion efficiency (PCE)) still lag behind the PTAA-based devices (∼17.5%), primarily due to a <em>V</em><small><sub>OC</sub></small> loss of ∼100 mV. Further investigation based on light intensity analysis of the <em>V</em><small><sub>OC</sub></small> and FF and the decrease in <em>V</em><small><sub>OC</sub></small> compared to the quasi-Fermi level splitting (QFLS) indicates that the <em>V</em><small><sub>OC</sub></small> is limited by trap-assisted recombination at the NiO/perovskite interface. Additionally, SCAPS simulations show that the presence of a high interfacial trap density leads to a <em>V</em><small><sub>OC</sub></small> loss in NiO-based devices. Upon passivation of the NiO/perovskite interface with Me-4PACz, the <em>V</em><small><sub>OC</sub></small> increases by 170–200 mV and is similar for NiO<small><sub>Bu-MeAMD</sub></small> and Al:NiO<small><sub>Bu-MeAMD</sub></small>, leading to the conclusion that there is no influence of the NiO resistivity on the <em>V</em><small><sub>OC</sub></small> once interface passivation is realized. Finally, our work highlights the necessity of comparing NiO-based devices with state-of-the-art HTL-based devices to draw conclusion about the influence of specific material properties on device performance.</p>\",\"PeriodicalId\":18242,\"journal\":{\"name\":\"Materials Advances\",\"volume\":\" 21\",\"pages\":\" 8652-8664\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2024-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11472218/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/ma/d4ma00873a\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Advances","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/ma/d4ma00873a","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

最新报告显示,氧化镍(NiO)作为空穴传输层(HTL)与有机层(如 PTAA 或自组装单层 SAM)结合使用时,可提高单结和串联器件的良率。然而,很少有报道称在没有 PTAA 或 SAM 的器件中使用氧化镍会产生高性能器件。在这项工作中,我们评估了文献中认为相关的关键氧化镍特性(即电阻率和表面能)对器件性能的影响,并将基于氧化镍的器件与基于 PTAA 的器件进行了系统比较。为此,我们研究了(热)原子层沉积 (ALD) 氧化镍(NiOBu-MeAMD)、掺铝氧化镍(Al:NiOBu-MeAMD)和等离子体辅助 ALD 氧化镍(NiOMeCp)薄膜,它们的电阻率范围都很宽。虽然 Al:NiOBu-MeAMD (∼400 Ω cm)和 NiOMeCp(∼80 Ω cm)薄膜的电阻率低于 NiOBu-MeAMD(∼10 kΩ cm),但与基于 NiOBu-MeAMD 的器件相比,基于 Al:NiOBu-MeAMD 和 NiOMeCp 的器件具有适度的开路电压(V OC)增益(∼30 mV)。总体而言,性能最好的基于 NiO 的器件(功率转换效率为 14.8%)仍然落后于基于 PTAA 的器件(17.5%),这主要是由于 V OC 损失了 100 mV。根据对 V OC 和 FF 的光强分析以及 V OC 与准费米级分裂(QFLS)相比的下降进行的进一步研究表明,V OC 受限于 NiO/perovskite 界面的陷阱辅助重组。此外,SCAPS 模拟表明,高界面陷阱密度的存在会导致氧化镍基器件的 V OC 损失。用 Me-4PACz 对 NiO/perovskite 界面进行钝化后,V OC 增加了 170-200 mV,而且 NiOBu-MeAMD 和 Al:NiOBu-MeAMD 的情况相似,由此得出结论:一旦实现界面钝化,NiO 电阻率对 V OC 没有影响。最后,我们的工作强调了将基于氧化镍的器件与最先进的基于 HTL 的器件进行比较的必要性,从而得出特定材料特性对器件性能影响的结论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
On the VOC loss in NiO-based inverted metal halide perovskite solar cells†

Recent reports have shown that nickel oxide (NiO) when adopted as a hole transport layer (HTL) in combination with organic layers, such as PTAA or self-assembled monolayers (SAMs), leads to a higher device yield for both single junction as well as tandem devices. Nevertheless, implementing NiO in devices without PTAA or SAM is seldom reported to lead to high-performance devices. In this work, we assess the effect of key NiO properties deemed relevant in literature, namely- resistivity and surface energy, on the device performance and systematically compare the NiO-based devices with those based on PTAA. To this purpose, (thermal) atomic layer deposited (ALD) NiO (NiOBu-MeAMD), Al-doped NiO (Al:NiOBu-MeAMD), and plasma-assisted ALD NiO (NiOMeCp) films, characterized by a wide range of resistivity, are investigated. Although Al:NiOBu-MeAMD (∼400 Ω cm) and NiOMeCp(∼80 Ωcm) films have a lower resistivity than NiOBu-MeAMD (∼10 kΩ cm), the Al:NiOBu-MeAMD and NiOMeCp-based devices are found to have a modest open circuit voltage (VOC) gain of ∼30 mV compared to NiOBu-MeAMD-based devices. Overall, the best-performing NiO-based devices (∼14.8% power conversion efficiency (PCE)) still lag behind the PTAA-based devices (∼17.5%), primarily due to a VOC loss of ∼100 mV. Further investigation based on light intensity analysis of the VOC and FF and the decrease in VOC compared to the quasi-Fermi level splitting (QFLS) indicates that the VOC is limited by trap-assisted recombination at the NiO/perovskite interface. Additionally, SCAPS simulations show that the presence of a high interfacial trap density leads to a VOC loss in NiO-based devices. Upon passivation of the NiO/perovskite interface with Me-4PACz, the VOC increases by 170–200 mV and is similar for NiOBu-MeAMD and Al:NiOBu-MeAMD, leading to the conclusion that there is no influence of the NiO resistivity on the VOC once interface passivation is realized. Finally, our work highlights the necessity of comparing NiO-based devices with state-of-the-art HTL-based devices to draw conclusion about the influence of specific material properties on device performance.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Advances
Materials Advances MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
7.60
自引率
2.00%
发文量
665
审稿时长
5 weeks
期刊最新文献
Back cover Back cover Correction: Cu(i) diimine complexes as immobilised antibacterial photosensitisers operating in water under visible light Microwave-assisted synthesis of copper-loaded polyamidoxime brushes as an efficient catalytic system for nitroarene reduction† Controlling ligand density and viscoelasticity in synthetic biomimetic polyisocyanide hydrogels for studying cell behaviours: the key to truly biomimetic hydrogels†
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1