深入分析不同肉类加工厂的食品和环境微生物群特征。

IF 13.8 1区 生物学 Q1 MICROBIOLOGY Microbiome Pub Date : 2024-10-15 DOI:10.1186/s40168-024-01856-3
Coral Barcenilla, José F Cobo-Díaz, Alba Puente, Vincenzo Valentino, Francesca De Filippis, Danilo Ercolini, Niccolò Carlino, Federica Pinto, Nicola Segata, Miguel Prieto, Mercedes López, Avelino Alvarez-Ordóñez
{"title":"深入分析不同肉类加工厂的食品和环境微生物群特征。","authors":"Coral Barcenilla, José F Cobo-Díaz, Alba Puente, Vincenzo Valentino, Francesca De Filippis, Danilo Ercolini, Niccolò Carlino, Federica Pinto, Nicola Segata, Miguel Prieto, Mercedes López, Avelino Alvarez-Ordóñez","doi":"10.1186/s40168-024-01856-3","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Processing environments can be an important source of pathogenic and spoilage microorganisms that cross contaminate meat and meat products. The aim of this study was to characterize the microbiome of raw materials, processing environments and end products from 19 facilities producing different meat products.</p><p><strong>Results: </strong>The taxonomic profiles of the microbial communities evolved along processing, from raw materials to end products, suggesting that food contact (FC) surfaces play an important role in modulating the microbiome of final products. Some species persisted with the highest relative abundance in raw materials, food processing environments and/or in the final product, including species from the genera Pseudomonas, Staphylococcus, Brochothrix, Acinetobacter and Psychrobacter. Processing environments showed a very diverse core microbiota, partially shared with the products. Pseudomonas fragi and Pseudomonas sp. Lz4W (in all sample and facility types) and Brochothrix thermosphacta, Psychrobacter sp. and Psychrobacter sp. P11F6 (in raw materials, FC surfaces and end products) were prominent members of the core microbiota for all facilities, while Latilactobacillus sakei was found as a dominant species exclusively in end products from the facilities producing fermented sausages. Processing environments showed a higher amount of antimicrobial resistance genes and virulence factors than raw materials and end products. One thousand four hundred twenty-one medium/high-quality metagenome-assembled genomes (MAGs) were reconstructed. Of these, 274 high-quality MAGs (completeness > 90%) corresponded to 210 putative new species, mostly found in processing environments. For two relevant taxa in meat curing and fermentation processes (S. equorum and L. sakei, respectively), phylogenetic variation was observed associated with the specific processing facility under study, which suggests that specific strains of these taxa may be selected in different meat processing plants, likely contributing to the peculiar sensorial traits of the end products produced in them.</p><p><strong>Conclusions: </strong>Overall, our findings provide the most detailed metagenomics-based perspective up to now of the microbes that thrive in meat, meat products and associated environments and open avenues for future research activities to better understand the microbiome functionality and potential contribution to meat quality and safety. Video Abstract.</p>","PeriodicalId":18447,"journal":{"name":"Microbiome","volume":"12 1","pages":"199"},"PeriodicalIF":13.8000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11481301/pdf/","citationCount":"0","resultStr":"{\"title\":\"In-depth characterization of food and environmental microbiomes across different meat processing plants.\",\"authors\":\"Coral Barcenilla, José F Cobo-Díaz, Alba Puente, Vincenzo Valentino, Francesca De Filippis, Danilo Ercolini, Niccolò Carlino, Federica Pinto, Nicola Segata, Miguel Prieto, Mercedes López, Avelino Alvarez-Ordóñez\",\"doi\":\"10.1186/s40168-024-01856-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Processing environments can be an important source of pathogenic and spoilage microorganisms that cross contaminate meat and meat products. The aim of this study was to characterize the microbiome of raw materials, processing environments and end products from 19 facilities producing different meat products.</p><p><strong>Results: </strong>The taxonomic profiles of the microbial communities evolved along processing, from raw materials to end products, suggesting that food contact (FC) surfaces play an important role in modulating the microbiome of final products. Some species persisted with the highest relative abundance in raw materials, food processing environments and/or in the final product, including species from the genera Pseudomonas, Staphylococcus, Brochothrix, Acinetobacter and Psychrobacter. Processing environments showed a very diverse core microbiota, partially shared with the products. Pseudomonas fragi and Pseudomonas sp. Lz4W (in all sample and facility types) and Brochothrix thermosphacta, Psychrobacter sp. and Psychrobacter sp. P11F6 (in raw materials, FC surfaces and end products) were prominent members of the core microbiota for all facilities, while Latilactobacillus sakei was found as a dominant species exclusively in end products from the facilities producing fermented sausages. Processing environments showed a higher amount of antimicrobial resistance genes and virulence factors than raw materials and end products. One thousand four hundred twenty-one medium/high-quality metagenome-assembled genomes (MAGs) were reconstructed. Of these, 274 high-quality MAGs (completeness > 90%) corresponded to 210 putative new species, mostly found in processing environments. For two relevant taxa in meat curing and fermentation processes (S. equorum and L. sakei, respectively), phylogenetic variation was observed associated with the specific processing facility under study, which suggests that specific strains of these taxa may be selected in different meat processing plants, likely contributing to the peculiar sensorial traits of the end products produced in them.</p><p><strong>Conclusions: </strong>Overall, our findings provide the most detailed metagenomics-based perspective up to now of the microbes that thrive in meat, meat products and associated environments and open avenues for future research activities to better understand the microbiome functionality and potential contribution to meat quality and safety. Video Abstract.</p>\",\"PeriodicalId\":18447,\"journal\":{\"name\":\"Microbiome\",\"volume\":\"12 1\",\"pages\":\"199\"},\"PeriodicalIF\":13.8000,\"publicationDate\":\"2024-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11481301/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microbiome\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s40168-024-01856-3\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbiome","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s40168-024-01856-3","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

背景:加工环境可能是交叉污染肉类和肉制品的病原微生物和腐败微生物的重要来源。本研究的目的是描述生产不同肉制品的 19 家工厂的原材料、加工环境和最终产品中微生物群落的特征:结果:从原材料到最终产品,微生物群落的分类概况在加工过程中不断演变,这表明食品接触(FC)表面在调节最终产品微生物群落方面发挥着重要作用。一些物种在原材料、食品加工环境和/或最终产品中的相对丰度最高,包括假单胞菌属、葡萄球菌属、布氏杆菌属、醋氨杆菌属和精神杆菌属。加工环境中的核心微生物群非常多样化,部分与产品共享。fragi 假单胞菌和 Lz4W 假单胞菌(存在于所有样品和设备类型中)以及 Brochothrix thermosphacta、Psychrobacter sp.与原材料和最终产品相比,加工环境中的抗菌药耐药性基因和毒力因子含量更高。共重建了 1421 个中/高质量元基因组(MAG)。其中,274 个高质量 MAG(完整性大于 90%)对应 210 个推测的新物种,这些物种大多出现在加工环境中。对于肉类腌制和发酵过程中的两个相关类群(分别为 S. equorum 和 L. sakei),观察到的系统发育变异与所研究的特定加工设施有关,这表明这些类群的特定菌株可能在不同的肉类加工厂中被选育出来,很可能是这些加工厂生产的最终产品具有特殊感官特征的原因:总之,我们的研究结果提供了迄今为止最详细的基于元基因组学的肉类、肉制品及相关环境中微生物的视角,并为未来的研究活动开辟了途径,以更好地了解微生物组的功能以及对肉类质量和安全的潜在贡献。视频摘要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
In-depth characterization of food and environmental microbiomes across different meat processing plants.

Background: Processing environments can be an important source of pathogenic and spoilage microorganisms that cross contaminate meat and meat products. The aim of this study was to characterize the microbiome of raw materials, processing environments and end products from 19 facilities producing different meat products.

Results: The taxonomic profiles of the microbial communities evolved along processing, from raw materials to end products, suggesting that food contact (FC) surfaces play an important role in modulating the microbiome of final products. Some species persisted with the highest relative abundance in raw materials, food processing environments and/or in the final product, including species from the genera Pseudomonas, Staphylococcus, Brochothrix, Acinetobacter and Psychrobacter. Processing environments showed a very diverse core microbiota, partially shared with the products. Pseudomonas fragi and Pseudomonas sp. Lz4W (in all sample and facility types) and Brochothrix thermosphacta, Psychrobacter sp. and Psychrobacter sp. P11F6 (in raw materials, FC surfaces and end products) were prominent members of the core microbiota for all facilities, while Latilactobacillus sakei was found as a dominant species exclusively in end products from the facilities producing fermented sausages. Processing environments showed a higher amount of antimicrobial resistance genes and virulence factors than raw materials and end products. One thousand four hundred twenty-one medium/high-quality metagenome-assembled genomes (MAGs) were reconstructed. Of these, 274 high-quality MAGs (completeness > 90%) corresponded to 210 putative new species, mostly found in processing environments. For two relevant taxa in meat curing and fermentation processes (S. equorum and L. sakei, respectively), phylogenetic variation was observed associated with the specific processing facility under study, which suggests that specific strains of these taxa may be selected in different meat processing plants, likely contributing to the peculiar sensorial traits of the end products produced in them.

Conclusions: Overall, our findings provide the most detailed metagenomics-based perspective up to now of the microbes that thrive in meat, meat products and associated environments and open avenues for future research activities to better understand the microbiome functionality and potential contribution to meat quality and safety. Video Abstract.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Microbiome
Microbiome MICROBIOLOGY-
CiteScore
21.90
自引率
2.60%
发文量
198
审稿时长
4 weeks
期刊介绍: Microbiome is a journal that focuses on studies of microbiomes in humans, animals, plants, and the environment. It covers both natural and manipulated microbiomes, such as those in agriculture. The journal is interested in research that uses meta-omics approaches or novel bioinformatics tools and emphasizes the community/host interaction and structure-function relationship within the microbiome. Studies that go beyond descriptive omics surveys and include experimental or theoretical approaches will be considered for publication. The journal also encourages research that establishes cause and effect relationships and supports proposed microbiome functions. However, studies of individual microbial isolates/species without exploring their impact on the host or the complex microbiome structures and functions will not be considered for publication. Microbiome is indexed in BIOSIS, Current Contents, DOAJ, Embase, MEDLINE, PubMed, PubMed Central, and Science Citations Index Expanded.
期刊最新文献
Ileal microbial microbiome and its secondary bile acids modulate susceptibility to nonalcoholic steatohepatitis in dairy goats. The links between dietary diversity and RNA virus diversity harbored by the great evening bat (Ia io). Gut-derived IL-13 contributes to growth via promoting hepatic IGF-1 production. From grasslands to genes: exploring the major microbial drivers of antibiotic-resistance in microhabitats under persistent overgrazing. Correction: Parabacteroides distasonis regulates the infectivity and pathogenicity of SVCV at different water temperatures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1