利用 STAMP 对空间转录组学进行可解释的空间感知降维。

IF 36.1 1区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Nature Methods Pub Date : 2024-10-15 DOI:10.1038/s41592-024-02463-8
Chengwei Zhong, Kok Siong Ang, Jinmiao Chen
{"title":"利用 STAMP 对空间转录组学进行可解释的空间感知降维。","authors":"Chengwei Zhong, Kok Siong Ang, Jinmiao Chen","doi":"10.1038/s41592-024-02463-8","DOIUrl":null,"url":null,"abstract":"Spatial transcriptomics produces high-dimensional gene expression measurements with spatial context. Obtaining a biologically meaningful low-dimensional representation of such data is crucial for effective interpretation and downstream analysis. Here, we present Spatial Transcriptomics Analysis with topic Modeling to uncover spatial Patterns (STAMP), an interpretable spatially aware dimension reduction method built on a deep generative model that returns biologically relevant, low-dimensional spatial topics and associated gene modules. STAMP can analyze data ranging from a single section to multiple sections and from different technologies to time-series data, returning topics matching known biological domains and associated gene modules containing established markers highly ranked within. In a lung cancer sample, STAMP delineated cell states with supporting markers at a higher resolution than the original annotation and uncovered cancer-associated fibroblasts concentrated on the tumor edge’s exterior. In time-series data of mouse embryonic development, STAMP disentangled the erythro-myeloid hematopoiesis and hepatocytes developmental trajectories within the liver. STAMP is highly scalable and can handle more than 500,000 cells. Spatial Transcriptomics Analysis with topic Modeling to uncover spatial Patterns (STAMP) is a versatile and scalable method for dimension reduction in spatially resolved transcriptomics that enables discovery of biologically relevant tissue domains.","PeriodicalId":18981,"journal":{"name":"Nature Methods","volume":"21 11","pages":"2072-2083"},"PeriodicalIF":36.1000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41592-024-02463-8.pdf","citationCount":"0","resultStr":"{\"title\":\"Interpretable spatially aware dimension reduction of spatial transcriptomics with STAMP\",\"authors\":\"Chengwei Zhong, Kok Siong Ang, Jinmiao Chen\",\"doi\":\"10.1038/s41592-024-02463-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Spatial transcriptomics produces high-dimensional gene expression measurements with spatial context. Obtaining a biologically meaningful low-dimensional representation of such data is crucial for effective interpretation and downstream analysis. Here, we present Spatial Transcriptomics Analysis with topic Modeling to uncover spatial Patterns (STAMP), an interpretable spatially aware dimension reduction method built on a deep generative model that returns biologically relevant, low-dimensional spatial topics and associated gene modules. STAMP can analyze data ranging from a single section to multiple sections and from different technologies to time-series data, returning topics matching known biological domains and associated gene modules containing established markers highly ranked within. In a lung cancer sample, STAMP delineated cell states with supporting markers at a higher resolution than the original annotation and uncovered cancer-associated fibroblasts concentrated on the tumor edge’s exterior. In time-series data of mouse embryonic development, STAMP disentangled the erythro-myeloid hematopoiesis and hepatocytes developmental trajectories within the liver. STAMP is highly scalable and can handle more than 500,000 cells. Spatial Transcriptomics Analysis with topic Modeling to uncover spatial Patterns (STAMP) is a versatile and scalable method for dimension reduction in spatially resolved transcriptomics that enables discovery of biologically relevant tissue domains.\",\"PeriodicalId\":18981,\"journal\":{\"name\":\"Nature Methods\",\"volume\":\"21 11\",\"pages\":\"2072-2083\"},\"PeriodicalIF\":36.1000,\"publicationDate\":\"2024-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s41592-024-02463-8.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Methods\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.nature.com/articles/s41592-024-02463-8\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Methods","FirstCategoryId":"99","ListUrlMain":"https://www.nature.com/articles/s41592-024-02463-8","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

空间转录组学产生了具有空间背景的高维基因表达测量数据。为这类数据获取具有生物学意义的低维表示对于有效解释和下游分析至关重要。在这里,我们介绍了利用主题建模揭示空间模式的空间转录组学分析(STAMP),这是一种可解释的空间感知降维方法,它建立在一个深度生成模型之上,可返回生物相关的低维空间主题和相关基因模块。STAMP 可以分析从单个切片到多个切片的数据,以及从不同技术到时间序列的数据,并返回与已知生物领域相匹配的主题和相关的基因模块,这些基因模块中包含已建立的高度排序的标记物。在肺癌样本中,STAMP 以比原始注释更高的分辨率划分了带有支持标记的细胞状态,并发现了集中在肿瘤边缘外部的癌症相关成纤维细胞。在小鼠胚胎发育的时间序列数据中,STAMP 分离了肝脏内红细胞-髓系造血和肝细胞的发育轨迹。STAMP 具有高度可扩展性,可处理超过 500,000 个细胞。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Interpretable spatially aware dimension reduction of spatial transcriptomics with STAMP
Spatial transcriptomics produces high-dimensional gene expression measurements with spatial context. Obtaining a biologically meaningful low-dimensional representation of such data is crucial for effective interpretation and downstream analysis. Here, we present Spatial Transcriptomics Analysis with topic Modeling to uncover spatial Patterns (STAMP), an interpretable spatially aware dimension reduction method built on a deep generative model that returns biologically relevant, low-dimensional spatial topics and associated gene modules. STAMP can analyze data ranging from a single section to multiple sections and from different technologies to time-series data, returning topics matching known biological domains and associated gene modules containing established markers highly ranked within. In a lung cancer sample, STAMP delineated cell states with supporting markers at a higher resolution than the original annotation and uncovered cancer-associated fibroblasts concentrated on the tumor edge’s exterior. In time-series data of mouse embryonic development, STAMP disentangled the erythro-myeloid hematopoiesis and hepatocytes developmental trajectories within the liver. STAMP is highly scalable and can handle more than 500,000 cells. Spatial Transcriptomics Analysis with topic Modeling to uncover spatial Patterns (STAMP) is a versatile and scalable method for dimension reduction in spatially resolved transcriptomics that enables discovery of biologically relevant tissue domains.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Methods
Nature Methods 生物-生化研究方法
CiteScore
58.70
自引率
1.70%
发文量
326
审稿时长
1 months
期刊介绍: Nature Methods is a monthly journal that focuses on publishing innovative methods and substantial enhancements to fundamental life sciences research techniques. Geared towards a diverse, interdisciplinary readership of researchers in academia and industry engaged in laboratory work, the journal offers new tools for research and emphasizes the immediate practical significance of the featured work. It publishes primary research papers and reviews recent technical and methodological advancements, with a particular interest in primary methods papers relevant to the biological and biomedical sciences. This includes methods rooted in chemistry with practical applications for studying biological problems.
期刊最新文献
Global analysis of endogenous protein disorder in cells. CelloType: a unified model for segmentation and classification of tissue images. Super-resolution imaging of fast morphological dynamics of neurons in behaving animals. Accurate RNA 3D structure prediction using a language model-based deep learning approach. Large language modeling and deep learning shed light on RNA structure prediction.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1