用于发现镇痛靶点的第一感觉突触微流体模型。

IF 2.8 3区 医学 Q2 NEUROSCIENCES Molecular Pain Pub Date : 2024-10-16 DOI:10.1177/17448069241293286
Georgios Kimourtzis, Ramin Raouf
{"title":"用于发现镇痛靶点的第一感觉突触微流体模型。","authors":"Georgios Kimourtzis, Ramin Raouf","doi":"10.1177/17448069241293286","DOIUrl":null,"url":null,"abstract":"<p><p>The synaptic connections between dorsal root ganglia (DRG) and dorsal horn (DH) neurons are a crucial relay point for the transmission of painful stimuli. To delineate how synaptic plasticity may modulate the excitability of DH neurons, we have devised a microfluidic co-culture model that recapitulates the first sensory synapse using postnatal mouse sensory neurons. We show that DRG-DH co-cultures characterize salient features of the in vivo physiology of sensory neurons. Immunocytcochemical experiments of the cultured DH neurons show a co-localization of MAP2 with VGLUT2 and of MAP2 with Synapsin 1, corroborating the glutamatergic identity of the DH neurons and further suggesting the formation of active synapses in this neuronal set. Fluorometric imaging experiments demonstrate the elicitation of calcium responses in DH neurons following the stimulation of DRG cell bodies or axons. Selective NMDA and AMPA receptor blockade appreciably silences DH neuron responses, suggesting that glutamatergic signaling is maintained in vitro. Last, a surrogate model of peripheral nerve injury is introduced in the form of an axotomy, which results in elevated and prolonged calcium responses of DH neurons. Overall, the microfluidic mouse co-cultures provide a method advancement in the study of periphery-to-center pain signaling, where the potential of utilizing the platform for drug target identification is underscored.</p>","PeriodicalId":19010,"journal":{"name":"Molecular Pain","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A microfluidic model of the first sensory synapse for analgesic target discovery.\",\"authors\":\"Georgios Kimourtzis, Ramin Raouf\",\"doi\":\"10.1177/17448069241293286\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The synaptic connections between dorsal root ganglia (DRG) and dorsal horn (DH) neurons are a crucial relay point for the transmission of painful stimuli. To delineate how synaptic plasticity may modulate the excitability of DH neurons, we have devised a microfluidic co-culture model that recapitulates the first sensory synapse using postnatal mouse sensory neurons. We show that DRG-DH co-cultures characterize salient features of the in vivo physiology of sensory neurons. Immunocytcochemical experiments of the cultured DH neurons show a co-localization of MAP2 with VGLUT2 and of MAP2 with Synapsin 1, corroborating the glutamatergic identity of the DH neurons and further suggesting the formation of active synapses in this neuronal set. Fluorometric imaging experiments demonstrate the elicitation of calcium responses in DH neurons following the stimulation of DRG cell bodies or axons. Selective NMDA and AMPA receptor blockade appreciably silences DH neuron responses, suggesting that glutamatergic signaling is maintained in vitro. Last, a surrogate model of peripheral nerve injury is introduced in the form of an axotomy, which results in elevated and prolonged calcium responses of DH neurons. Overall, the microfluidic mouse co-cultures provide a method advancement in the study of periphery-to-center pain signaling, where the potential of utilizing the platform for drug target identification is underscored.</p>\",\"PeriodicalId\":19010,\"journal\":{\"name\":\"Molecular Pain\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Pain\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1177/17448069241293286\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Pain","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/17448069241293286","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

背根神经节(DRG)和背角神经元(DH)之间的突触连接是疼痛刺激传递的关键中继点。为了弄清突触可塑性如何调节 DH 神经元的兴奋性,我们设计了一种微流控共培养模型,利用出生后的小鼠感觉神经元重现了第一个感觉突触。我们的研究表明,DRG-DH共培养物能描述感觉神经元体内生理的显著特征。对培养的 DH 神经元进行的免疫细胞化学实验显示,MAP2 与 VGLUT2 和 MAP2 与突触素 1 共定位,这证实了 DH 神经元的谷氨酸能特性,并进一步表明在这组神经元中形成了活跃的突触。荧光成像实验证明,DRG 细胞体或轴突受到刺激后,DH 神经元会产生钙离子反应。选择性阻断 NMDA 和 AMPA 受体可明显抑制 DH 神经元的反应,这表明谷氨酸能信号传导在体外得以维持。最后,以轴突切断术的形式引入了外周神经损伤的替代模型,这将导致 DH 神经元的钙离子反应升高并延长。总之,微流控小鼠共培养为研究从外周到中心的疼痛信号传导提供了一种先进的方法,利用该平台进行药物靶点鉴定的潜力得到了强调。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A microfluidic model of the first sensory synapse for analgesic target discovery.

The synaptic connections between dorsal root ganglia (DRG) and dorsal horn (DH) neurons are a crucial relay point for the transmission of painful stimuli. To delineate how synaptic plasticity may modulate the excitability of DH neurons, we have devised a microfluidic co-culture model that recapitulates the first sensory synapse using postnatal mouse sensory neurons. We show that DRG-DH co-cultures characterize salient features of the in vivo physiology of sensory neurons. Immunocytcochemical experiments of the cultured DH neurons show a co-localization of MAP2 with VGLUT2 and of MAP2 with Synapsin 1, corroborating the glutamatergic identity of the DH neurons and further suggesting the formation of active synapses in this neuronal set. Fluorometric imaging experiments demonstrate the elicitation of calcium responses in DH neurons following the stimulation of DRG cell bodies or axons. Selective NMDA and AMPA receptor blockade appreciably silences DH neuron responses, suggesting that glutamatergic signaling is maintained in vitro. Last, a surrogate model of peripheral nerve injury is introduced in the form of an axotomy, which results in elevated and prolonged calcium responses of DH neurons. Overall, the microfluidic mouse co-cultures provide a method advancement in the study of periphery-to-center pain signaling, where the potential of utilizing the platform for drug target identification is underscored.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular Pain
Molecular Pain 医学-神经科学
CiteScore
5.60
自引率
3.00%
发文量
56
审稿时长
6-12 weeks
期刊介绍: Molecular Pain is a peer-reviewed, open access journal that considers manuscripts in pain research at the cellular, subcellular and molecular levels. Molecular Pain provides a forum for molecular pain scientists to communicate their research findings in a targeted manner to others in this important and growing field.
期刊最新文献
A microfluidic model of the first sensory synapse for analgesic target discovery. Neural Adaptation of the Reward System in Primary Dysmenorrhea. Analyzing Substance Levels and Pain Perception in Painless Labor: The Impact of Spinal Epidural Analgesia. Upregulation of KDM6B in the anterior cingulate cortex contributes to neonatal maternal deprivation-induced chronic visceral pain in mice. Low-frequency electroacupuncture exerts antinociceptive effects through activation of POMC neural circuit induced endorphinergic input to the periaqueductal gray from the arcuate nucleus
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1