从材料到结构:实现柔性压力传感器线性度的整体研究。

IF 2.9 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Nanotechnology Pub Date : 2024-11-05 DOI:10.1088/1361-6528/ad8750
Pei Li, Yong Zhang, Chunbao Li, Xian Chen, Xin Gou, Yong Zhou, Jun Yang, Lei Xie
{"title":"从材料到结构:实现柔性压力传感器线性度的整体研究。","authors":"Pei Li, Yong Zhang, Chunbao Li, Xian Chen, Xin Gou, Yong Zhou, Jun Yang, Lei Xie","doi":"10.1088/1361-6528/ad8750","DOIUrl":null,"url":null,"abstract":"<p><p>As a pivotal category in the realm of electronics skins, flexible pressure sensors have become a focal point due to their diverse applications such as robotics, aerospace industries, and wearable devices. With the growing demands for measurement accuracy, data reliability, and electrical system compatibility, enhancing sensor's linearity has become increasingly critical. Analysis shows that the nonlinearity of flexible sensors primarily originates from mechanical nonlinearity due to the nolinear deformation of polymers and electrical nonlinearity caused by changes in parameters such as resistance. These nonlinearities can be mitigated through geometric design, material design or combination of both. This work reviews linear design strategies for sensors from the perspectives of structure and materials, covering the following main points: (a) an overview of the fundamental working mechanisms for various sensors; (b) a comprehensive explanation of different linear design strategies and the underlying reasons; (c) a detailed review of existing work employing these strategies and the achieved effects. Additionally, this work delves into diverse applications of linear flexible pressure sensors, spanning robotics, safety, electronic skin, and health monitoring. Finally, existing constraints and future research prospects are outlined to pave the way for the further development of high-performance flexible pressure sensors.</p>","PeriodicalId":19035,"journal":{"name":"Nanotechnology","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"From materials to structures: a holistic examination of achieving linearity in flexible pressure sensors.\",\"authors\":\"Pei Li, Yong Zhang, Chunbao Li, Xian Chen, Xin Gou, Yong Zhou, Jun Yang, Lei Xie\",\"doi\":\"10.1088/1361-6528/ad8750\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>As a pivotal category in the realm of electronics skins, flexible pressure sensors have become a focal point due to their diverse applications such as robotics, aerospace industries, and wearable devices. With the growing demands for measurement accuracy, data reliability, and electrical system compatibility, enhancing sensor's linearity has become increasingly critical. Analysis shows that the nonlinearity of flexible sensors primarily originates from mechanical nonlinearity due to the nolinear deformation of polymers and electrical nonlinearity caused by changes in parameters such as resistance. These nonlinearities can be mitigated through geometric design, material design or combination of both. This work reviews linear design strategies for sensors from the perspectives of structure and materials, covering the following main points: (a) an overview of the fundamental working mechanisms for various sensors; (b) a comprehensive explanation of different linear design strategies and the underlying reasons; (c) a detailed review of existing work employing these strategies and the achieved effects. Additionally, this work delves into diverse applications of linear flexible pressure sensors, spanning robotics, safety, electronic skin, and health monitoring. Finally, existing constraints and future research prospects are outlined to pave the way for the further development of high-performance flexible pressure sensors.</p>\",\"PeriodicalId\":19035,\"journal\":{\"name\":\"Nanotechnology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanotechnology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6528/ad8750\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanotechnology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/1361-6528/ad8750","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

柔性压力传感器是可穿戴电子设备领域的一个重要类别,由于其应用广泛,如人机界面和健康监测等,已成为一个焦点。为了满足这些应用的需要,人们设计出了新颖的材料设计和制造策略,以通过操纵机械和电气特性来提高设备性能。本研究主要回顾了近年来柔性压力传感器的发展,重点关注敏感材料和相关应用。首先,概述了各种传感器的基本工作机制。然后,探讨了不同的表面微结构或内部微结构对柔性传感器线性的影响。随后,我们深入探讨了线性柔性压力传感器的各种应用,包括机器人、安全、电子皮肤和健康监测等。最后,我们概述了现有的限制因素和未来的研究前景,为进一步开发高性能柔性压力传感器铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
From materials to structures: a holistic examination of achieving linearity in flexible pressure sensors.

As a pivotal category in the realm of electronics skins, flexible pressure sensors have become a focal point due to their diverse applications such as robotics, aerospace industries, and wearable devices. With the growing demands for measurement accuracy, data reliability, and electrical system compatibility, enhancing sensor's linearity has become increasingly critical. Analysis shows that the nonlinearity of flexible sensors primarily originates from mechanical nonlinearity due to the nolinear deformation of polymers and electrical nonlinearity caused by changes in parameters such as resistance. These nonlinearities can be mitigated through geometric design, material design or combination of both. This work reviews linear design strategies for sensors from the perspectives of structure and materials, covering the following main points: (a) an overview of the fundamental working mechanisms for various sensors; (b) a comprehensive explanation of different linear design strategies and the underlying reasons; (c) a detailed review of existing work employing these strategies and the achieved effects. Additionally, this work delves into diverse applications of linear flexible pressure sensors, spanning robotics, safety, electronic skin, and health monitoring. Finally, existing constraints and future research prospects are outlined to pave the way for the further development of high-performance flexible pressure sensors.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nanotechnology
Nanotechnology 工程技术-材料科学:综合
CiteScore
7.10
自引率
5.70%
发文量
820
审稿时长
2.5 months
期刊介绍: The journal aims to publish papers at the forefront of nanoscale science and technology and especially those of an interdisciplinary nature. Here, nanotechnology is taken to include the ability to individually address, control, and modify structures, materials and devices with nanometre precision, and the synthesis of such structures into systems of micro- and macroscopic dimensions such as MEMS based devices. It encompasses the understanding of the fundamental physics, chemistry, biology and technology of nanometre-scale objects and how such objects can be used in the areas of computation, sensors, nanostructured materials and nano-biotechnology.
期刊最新文献
Flexible pressure sensor with metallic reinforcement and graphene nanowalls for wearable electronics device. Thermal conductivity suppression in ZnO with AlZn2O4and ZnP2for thermoelectric applications. Focus on Institute of Applied Physics at Seoul National University. Magnetic domain wall and skyrmion manipulation by static and dynamic strain profiles. Single vertical InP nanowire diodes with low ideality factors contacted in-array for high-resolution optoelectronics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1