纳米医学中的磁性纳米粒子路线图。

IF 2.9 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Nanotechnology Pub Date : 2024-11-05 DOI:10.1088/1361-6528/ad8626
Kai Wu, Jian-Ping Wang, Niranjan A Natekar, Stefano Ciannella, Cristina González-Fernández, Jenifer Gomez-Pastora, Yuping Bao, Jinming Liu, Shuang Liang, Xian Wu, Linh Nguyen T Tran, Karla Mercedes Paz González, Hyeon Choe, Jacob Strayer, Poornima Ramesh Iyer, Jeffrey Chalmers, Vinit Kumar Chugh, Bahareh Rezaei, Shahriar Mostufa, Zhi Wei Tay, Chinmoy Saayujya, Quincy Huynh, Jacob Bryan, Renesmee Kuo, Elaine Yu, Prashant Chandrasekharan, Benjamin Fellows, Steven Conolly, Ravi L Hadimani, Ahmed A El-Gendy, Renata Saha, Thomas J Broomhall, Abigail L Wright, Michael Rotherham, Alicia J El Haj, Zhiyi Wang, Jiarong Liang, Ana Abad-Díaz-de-Cerio, Lucía Gandarias, Alicia G Gubieda, Ana García-Prieto, Mª Luisa Fdez-Gubieda
{"title":"纳米医学中的磁性纳米粒子路线图。","authors":"Kai Wu, Jian-Ping Wang, Niranjan A Natekar, Stefano Ciannella, Cristina González-Fernández, Jenifer Gomez-Pastora, Yuping Bao, Jinming Liu, Shuang Liang, Xian Wu, Linh Nguyen T Tran, Karla Mercedes Paz González, Hyeon Choe, Jacob Strayer, Poornima Ramesh Iyer, Jeffrey Chalmers, Vinit Kumar Chugh, Bahareh Rezaei, Shahriar Mostufa, Zhi Wei Tay, Chinmoy Saayujya, Quincy Huynh, Jacob Bryan, Renesmee Kuo, Elaine Yu, Prashant Chandrasekharan, Benjamin Fellows, Steven Conolly, Ravi L Hadimani, Ahmed A El-Gendy, Renata Saha, Thomas J Broomhall, Abigail L Wright, Michael Rotherham, Alicia J El Haj, Zhiyi Wang, Jiarong Liang, Ana Abad-Díaz-de-Cerio, Lucía Gandarias, Alicia G Gubieda, Ana García-Prieto, Mª Luisa Fdez-Gubieda","doi":"10.1088/1361-6528/ad8626","DOIUrl":null,"url":null,"abstract":"<p><p>Magnetic nanoparticles (MNPs) represent a class of small particles typically with diameters ranging from 1 to 100 nanometers. These nanoparticles are composed of magnetic materials such as iron, cobalt, nickel, or their alloys. The nanoscale size of MNPs gives them unique physicochemical (physical and chemical) properties not found in their bulk counterparts. Their versatile nature and unique magnetic behavior make them valuable in a wide range of scientific, medical, and technological fields. Over the past decade, there has been a significant surge in MNP-based applications spanning biomedical uses, environmental remediation, data storage, energy storage, and catalysis. Given their magnetic nature and small size, MNPs can be manipulated and guided using external magnetic fields. This characteristic is harnessed in biomedical applications, where these nanoparticles can be directed to specific targets in the body for imaging, drug delivery, or hyperthermia treatment. Herein, this roadmap offers an overview of the current status, challenges, and advancements in various facets of MNPs. It covers magnetic properties, synthesis, functionalization, characterization, and biomedical applications such as sample enrichment, bioassays, imaging, hyperthermia, neuromodulation, tissue engineering, and drug/gene delivery. However, as MNPs are increasingly explored for<i>in vivo</i>applications, concerns have emerged regarding their cytotoxicity, cellular uptake, and degradation, prompting attention from both researchers and clinicians. This roadmap aims to provide a comprehensive perspective on the evolving landscape of MNP research.</p>","PeriodicalId":19035,"journal":{"name":"Nanotechnology","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11539342/pdf/","citationCount":"0","resultStr":"{\"title\":\"Roadmap on magnetic nanoparticles in nanomedicine.\",\"authors\":\"Kai Wu, Jian-Ping Wang, Niranjan A Natekar, Stefano Ciannella, Cristina González-Fernández, Jenifer Gomez-Pastora, Yuping Bao, Jinming Liu, Shuang Liang, Xian Wu, Linh Nguyen T Tran, Karla Mercedes Paz González, Hyeon Choe, Jacob Strayer, Poornima Ramesh Iyer, Jeffrey Chalmers, Vinit Kumar Chugh, Bahareh Rezaei, Shahriar Mostufa, Zhi Wei Tay, Chinmoy Saayujya, Quincy Huynh, Jacob Bryan, Renesmee Kuo, Elaine Yu, Prashant Chandrasekharan, Benjamin Fellows, Steven Conolly, Ravi L Hadimani, Ahmed A El-Gendy, Renata Saha, Thomas J Broomhall, Abigail L Wright, Michael Rotherham, Alicia J El Haj, Zhiyi Wang, Jiarong Liang, Ana Abad-Díaz-de-Cerio, Lucía Gandarias, Alicia G Gubieda, Ana García-Prieto, Mª Luisa Fdez-Gubieda\",\"doi\":\"10.1088/1361-6528/ad8626\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Magnetic nanoparticles (MNPs) represent a class of small particles typically with diameters ranging from 1 to 100 nanometers. These nanoparticles are composed of magnetic materials such as iron, cobalt, nickel, or their alloys. The nanoscale size of MNPs gives them unique physicochemical (physical and chemical) properties not found in their bulk counterparts. Their versatile nature and unique magnetic behavior make them valuable in a wide range of scientific, medical, and technological fields. Over the past decade, there has been a significant surge in MNP-based applications spanning biomedical uses, environmental remediation, data storage, energy storage, and catalysis. Given their magnetic nature and small size, MNPs can be manipulated and guided using external magnetic fields. This characteristic is harnessed in biomedical applications, where these nanoparticles can be directed to specific targets in the body for imaging, drug delivery, or hyperthermia treatment. Herein, this roadmap offers an overview of the current status, challenges, and advancements in various facets of MNPs. It covers magnetic properties, synthesis, functionalization, characterization, and biomedical applications such as sample enrichment, bioassays, imaging, hyperthermia, neuromodulation, tissue engineering, and drug/gene delivery. However, as MNPs are increasingly explored for<i>in vivo</i>applications, concerns have emerged regarding their cytotoxicity, cellular uptake, and degradation, prompting attention from both researchers and clinicians. This roadmap aims to provide a comprehensive perspective on the evolving landscape of MNP research.</p>\",\"PeriodicalId\":19035,\"journal\":{\"name\":\"Nanotechnology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11539342/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanotechnology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6528/ad8626\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanotechnology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/1361-6528/ad8626","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

磁性纳米粒子(MNPs)是一类直径通常在 1 到 100 纳米之间的小颗粒。这些纳米颗粒由铁、钴、镍等磁性材料或它们的合金组成。MNPs 的纳米级尺寸赋予了它们独特的物理化学(物理和化学)特性,这是其块状对应物所不具备的。它们的多功能性和独特的磁性使其在广泛的科学、医学和技术领域具有重要价值。在过去十年中,基于 MNP 的应用大幅增加,涵盖生物医学用途、环境修复、数据存储、能量存储和催化等领域。鉴于其磁性和小尺寸,MNPs 可通过外部磁场进行操纵和引导。生物医学应用可利用这一特性,将这些纳米粒子导向体内的特定目标,进行成像、药物输送或热疗。本路线图概述了 MNPs 各方面的现状、挑战和进展。它涵盖了磁性能、合成、功能化、表征和生物医学应用,如样品富集、生物测定、成像、热疗、神经调节、组织工程和药物/基因递送。然而,随着 MNPs 在体内应用方面的探索日益增多,有关其细胞毒性、细胞吸收和降解的问题也随之出现,引起了研究人员和临床医生的关注。本路线图旨在提供有关 MNP 研究不断发展的全面视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Roadmap on magnetic nanoparticles in nanomedicine.

Magnetic nanoparticles (MNPs) represent a class of small particles typically with diameters ranging from 1 to 100 nanometers. These nanoparticles are composed of magnetic materials such as iron, cobalt, nickel, or their alloys. The nanoscale size of MNPs gives them unique physicochemical (physical and chemical) properties not found in their bulk counterparts. Their versatile nature and unique magnetic behavior make them valuable in a wide range of scientific, medical, and technological fields. Over the past decade, there has been a significant surge in MNP-based applications spanning biomedical uses, environmental remediation, data storage, energy storage, and catalysis. Given their magnetic nature and small size, MNPs can be manipulated and guided using external magnetic fields. This characteristic is harnessed in biomedical applications, where these nanoparticles can be directed to specific targets in the body for imaging, drug delivery, or hyperthermia treatment. Herein, this roadmap offers an overview of the current status, challenges, and advancements in various facets of MNPs. It covers magnetic properties, synthesis, functionalization, characterization, and biomedical applications such as sample enrichment, bioassays, imaging, hyperthermia, neuromodulation, tissue engineering, and drug/gene delivery. However, as MNPs are increasingly explored forin vivoapplications, concerns have emerged regarding their cytotoxicity, cellular uptake, and degradation, prompting attention from both researchers and clinicians. This roadmap aims to provide a comprehensive perspective on the evolving landscape of MNP research.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nanotechnology
Nanotechnology 工程技术-材料科学:综合
CiteScore
7.10
自引率
5.70%
发文量
820
审稿时长
2.5 months
期刊介绍: The journal aims to publish papers at the forefront of nanoscale science and technology and especially those of an interdisciplinary nature. Here, nanotechnology is taken to include the ability to individually address, control, and modify structures, materials and devices with nanometre precision, and the synthesis of such structures into systems of micro- and macroscopic dimensions such as MEMS based devices. It encompasses the understanding of the fundamental physics, chemistry, biology and technology of nanometre-scale objects and how such objects can be used in the areas of computation, sensors, nanostructured materials and nano-biotechnology.
期刊最新文献
Flexible pressure sensor with metallic reinforcement and graphene nanowalls for wearable electronics device. Thermal conductivity suppression in ZnO with AlZn2O4and ZnP2for thermoelectric applications. Focus on Institute of Applied Physics at Seoul National University. Magnetic domain wall and skyrmion manipulation by static and dynamic strain profiles. Single vertical InP nanowire diodes with low ideality factors contacted in-array for high-resolution optoelectronics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1