{"title":"解码和修正游戏障碍中的动态注意偏差。","authors":"Taiki Oka, Takatomi Kubo, Nao Kobayashi, Misa Murakami, Toshinori Chiba, Aurelio Cortese","doi":"10.1098/rstb.2023.0090","DOIUrl":null,"url":null,"abstract":"<p><p>With the spread of smartphones and computer games, concerns have escalated regarding the rising prevalence of gaming disorder. Patients often display attentional biases, unconsciously turning their attention towards gaming-related stimuli. However, attempts to discover and ameliorate these attentional deficits have yielded inconsistent outcomes, potentially due to the dynamic nature of attentional bias. This study investigated neural mechanisms underlying attentional bias state by combining neuroimaging (functional magnetic resonance imaging -fMRI) with an approach-avoidance task tailored to an individual's gaming preference. We conducted a multivariate pattern analysis of endogenous brain activity in 21 participants with probable gaming disorder. Our analyses revealed that activity patterns in the insula tracked temporal attentional bias states specific to gaming stimuli. A broad network of frontal and parietal regions instead appeared to predict a general temporal attentional bias state. Finally, we conducted a proof-of-concept study for 'just-in-time' attentional bias training through fMRI-decoded neurofeedback of insula activity patterns, named decoded attentional bias training (DecABT). Our preliminary results suggest that DecABT may help to decrease the attractiveness of gaming stimuli via a insula- and precuneus-based neural mechanism. This work provides new evidence for the insula as an endogenous regulator of attentional bias states in gaming disorder and a starting point to develop novel, individualized therapeutic approaches to treat addiction.This article is part of the theme issue 'Neurofeedback: new territories and neurocognitive mechanisms of endogenous neuromodulation'.</p>","PeriodicalId":19872,"journal":{"name":"Philosophical Transactions of the Royal Society B: Biological Sciences","volume":"379 1915","pages":"20230090"},"PeriodicalIF":5.4000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11491851/pdf/","citationCount":"0","resultStr":"{\"title\":\"Decoding and modifying dynamic attentional bias in gaming disorder.\",\"authors\":\"Taiki Oka, Takatomi Kubo, Nao Kobayashi, Misa Murakami, Toshinori Chiba, Aurelio Cortese\",\"doi\":\"10.1098/rstb.2023.0090\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>With the spread of smartphones and computer games, concerns have escalated regarding the rising prevalence of gaming disorder. Patients often display attentional biases, unconsciously turning their attention towards gaming-related stimuli. However, attempts to discover and ameliorate these attentional deficits have yielded inconsistent outcomes, potentially due to the dynamic nature of attentional bias. This study investigated neural mechanisms underlying attentional bias state by combining neuroimaging (functional magnetic resonance imaging -fMRI) with an approach-avoidance task tailored to an individual's gaming preference. We conducted a multivariate pattern analysis of endogenous brain activity in 21 participants with probable gaming disorder. Our analyses revealed that activity patterns in the insula tracked temporal attentional bias states specific to gaming stimuli. A broad network of frontal and parietal regions instead appeared to predict a general temporal attentional bias state. Finally, we conducted a proof-of-concept study for 'just-in-time' attentional bias training through fMRI-decoded neurofeedback of insula activity patterns, named decoded attentional bias training (DecABT). Our preliminary results suggest that DecABT may help to decrease the attractiveness of gaming stimuli via a insula- and precuneus-based neural mechanism. This work provides new evidence for the insula as an endogenous regulator of attentional bias states in gaming disorder and a starting point to develop novel, individualized therapeutic approaches to treat addiction.This article is part of the theme issue 'Neurofeedback: new territories and neurocognitive mechanisms of endogenous neuromodulation'.</p>\",\"PeriodicalId\":19872,\"journal\":{\"name\":\"Philosophical Transactions of the Royal Society B: Biological Sciences\",\"volume\":\"379 1915\",\"pages\":\"20230090\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11491851/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Philosophical Transactions of the Royal Society B: Biological Sciences\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1098/rstb.2023.0090\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/21 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Philosophical Transactions of the Royal Society B: Biological Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1098/rstb.2023.0090","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/21 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
Decoding and modifying dynamic attentional bias in gaming disorder.
With the spread of smartphones and computer games, concerns have escalated regarding the rising prevalence of gaming disorder. Patients often display attentional biases, unconsciously turning their attention towards gaming-related stimuli. However, attempts to discover and ameliorate these attentional deficits have yielded inconsistent outcomes, potentially due to the dynamic nature of attentional bias. This study investigated neural mechanisms underlying attentional bias state by combining neuroimaging (functional magnetic resonance imaging -fMRI) with an approach-avoidance task tailored to an individual's gaming preference. We conducted a multivariate pattern analysis of endogenous brain activity in 21 participants with probable gaming disorder. Our analyses revealed that activity patterns in the insula tracked temporal attentional bias states specific to gaming stimuli. A broad network of frontal and parietal regions instead appeared to predict a general temporal attentional bias state. Finally, we conducted a proof-of-concept study for 'just-in-time' attentional bias training through fMRI-decoded neurofeedback of insula activity patterns, named decoded attentional bias training (DecABT). Our preliminary results suggest that DecABT may help to decrease the attractiveness of gaming stimuli via a insula- and precuneus-based neural mechanism. This work provides new evidence for the insula as an endogenous regulator of attentional bias states in gaming disorder and a starting point to develop novel, individualized therapeutic approaches to treat addiction.This article is part of the theme issue 'Neurofeedback: new territories and neurocognitive mechanisms of endogenous neuromodulation'.
期刊介绍:
The journal publishes topics across the life sciences. As long as the core subject lies within the biological sciences, some issues may also include content crossing into other areas such as the physical sciences, social sciences, biophysics, policy, economics etc. Issues generally sit within four broad areas (although many issues sit across these areas):
Organismal, environmental and evolutionary biology
Neuroscience and cognition
Cellular, molecular and developmental biology
Health and disease.