Honghe Wang, Indrajeet Karnik, Prateek Uttreja, Peilun Zhang, Sateesh Kumar Vemula, Michael A Repka
{"title":"基于数学函数控制的 3D 打印片剂的开发及其对药物释放的影响","authors":"Honghe Wang, Indrajeet Karnik, Prateek Uttreja, Peilun Zhang, Sateesh Kumar Vemula, Michael A Repka","doi":"10.1007/s11095-024-03780-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>The application of 3D printing technology in drug delivery is often limited by the challenges of achieving precise control over drug release profiles. The goal of this study was to apply surface equations to construct 3D printed tablet models, adjust the functional parameters to obtain multiple tablet models and to correlate the model parameters with the in vitro drug release behavior.</p><p><strong>Methods: </strong>This study reports the development of 3D-printed tablets using surface geometries controlled by mathematical functions to modulate drug release. Utilizing fused deposition modeling (FDM) coupled with hot-melt extrusion (HME) technology, personalized drug delivery systems were produced using thermoplastic polymers. Different tablet shapes (T1-T5) were produced by varying the depth of the parabolic surface (b = 4, 2, 0, -2, -4 mm) to assess the impact of surface curvature on drug dissolution.</p><p><strong>Results: </strong>The T5 formulation, with the greatest surface curvature, demonstrated the fastest drug release, achieving complete release within 4 h. In contrast, T1 and T2 tablets exhibited a slower release over approximately 6 h. The correlation between surface area and drug release rate was confirmed, supporting the predictions of the Noyes-Whitney equation. Differential Scanning Calorimetry (DSC) and Scanning Electron Microscope (SEM) analyses verified the uniform dispersion of acetaminophen and the consistency of the internal structures, respectively.</p><p><strong>Conclusions: </strong>The precise control of tablet surface geometry effectively tailored drug release profiles, enhancing patient compliance and treatment efficacy. This novel approach offers significant advancements in personalized medicine by providing a highly reproducible and adaptable platform for optimizing drug delivery.</p>","PeriodicalId":20027,"journal":{"name":"Pharmaceutical Research","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of Mathematical Function Control-Based 3D Printed Tablets and Effect on Drug Release.\",\"authors\":\"Honghe Wang, Indrajeet Karnik, Prateek Uttreja, Peilun Zhang, Sateesh Kumar Vemula, Michael A Repka\",\"doi\":\"10.1007/s11095-024-03780-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>The application of 3D printing technology in drug delivery is often limited by the challenges of achieving precise control over drug release profiles. The goal of this study was to apply surface equations to construct 3D printed tablet models, adjust the functional parameters to obtain multiple tablet models and to correlate the model parameters with the in vitro drug release behavior.</p><p><strong>Methods: </strong>This study reports the development of 3D-printed tablets using surface geometries controlled by mathematical functions to modulate drug release. Utilizing fused deposition modeling (FDM) coupled with hot-melt extrusion (HME) technology, personalized drug delivery systems were produced using thermoplastic polymers. Different tablet shapes (T1-T5) were produced by varying the depth of the parabolic surface (b = 4, 2, 0, -2, -4 mm) to assess the impact of surface curvature on drug dissolution.</p><p><strong>Results: </strong>The T5 formulation, with the greatest surface curvature, demonstrated the fastest drug release, achieving complete release within 4 h. In contrast, T1 and T2 tablets exhibited a slower release over approximately 6 h. The correlation between surface area and drug release rate was confirmed, supporting the predictions of the Noyes-Whitney equation. Differential Scanning Calorimetry (DSC) and Scanning Electron Microscope (SEM) analyses verified the uniform dispersion of acetaminophen and the consistency of the internal structures, respectively.</p><p><strong>Conclusions: </strong>The precise control of tablet surface geometry effectively tailored drug release profiles, enhancing patient compliance and treatment efficacy. This novel approach offers significant advancements in personalized medicine by providing a highly reproducible and adaptable platform for optimizing drug delivery.</p>\",\"PeriodicalId\":20027,\"journal\":{\"name\":\"Pharmaceutical Research\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pharmaceutical Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s11095-024-03780-5\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutical Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11095-024-03780-5","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Development of Mathematical Function Control-Based 3D Printed Tablets and Effect on Drug Release.
Purpose: The application of 3D printing technology in drug delivery is often limited by the challenges of achieving precise control over drug release profiles. The goal of this study was to apply surface equations to construct 3D printed tablet models, adjust the functional parameters to obtain multiple tablet models and to correlate the model parameters with the in vitro drug release behavior.
Methods: This study reports the development of 3D-printed tablets using surface geometries controlled by mathematical functions to modulate drug release. Utilizing fused deposition modeling (FDM) coupled with hot-melt extrusion (HME) technology, personalized drug delivery systems were produced using thermoplastic polymers. Different tablet shapes (T1-T5) were produced by varying the depth of the parabolic surface (b = 4, 2, 0, -2, -4 mm) to assess the impact of surface curvature on drug dissolution.
Results: The T5 formulation, with the greatest surface curvature, demonstrated the fastest drug release, achieving complete release within 4 h. In contrast, T1 and T2 tablets exhibited a slower release over approximately 6 h. The correlation between surface area and drug release rate was confirmed, supporting the predictions of the Noyes-Whitney equation. Differential Scanning Calorimetry (DSC) and Scanning Electron Microscope (SEM) analyses verified the uniform dispersion of acetaminophen and the consistency of the internal structures, respectively.
Conclusions: The precise control of tablet surface geometry effectively tailored drug release profiles, enhancing patient compliance and treatment efficacy. This novel approach offers significant advancements in personalized medicine by providing a highly reproducible and adaptable platform for optimizing drug delivery.
期刊介绍:
Pharmaceutical Research, an official journal of the American Association of Pharmaceutical Scientists, is committed to publishing novel research that is mechanism-based, hypothesis-driven and addresses significant issues in drug discovery, development and regulation. Current areas of interest include, but are not limited to:
-(pre)formulation engineering and processing-
computational biopharmaceutics-
drug delivery and targeting-
molecular biopharmaceutics and drug disposition (including cellular and molecular pharmacology)-
pharmacokinetics, pharmacodynamics and pharmacogenetics.
Research may involve nonclinical and clinical studies, and utilize both in vitro and in vivo approaches. Studies on small drug molecules, pharmaceutical solid materials (including biomaterials, polymers and nanoparticles) biotechnology products (including genes, peptides, proteins and vaccines), and genetically engineered cells are welcome.