{"title":"阳光诱导的 DNA 损伤化学:光损伤嘧啶链内二聚体的碱性化学诱导反应透视。","authors":"Ritu Chaturvedi, Eric C Long","doi":"10.1111/php.14031","DOIUrl":null,"url":null,"abstract":"<p><p>Photoexcitation of cellular as well as isolated DNAs upon exposure to the UV portion of sunlight or other UV sources can lead to the covalent dimerization of adjacent intra-strand stacked pyrimidine nucleobase rings (i.e., at 5'-Py-p-Py-3' sites). These modifications generate, in mammalian DNA as well as the DNA of all other forms of life, lesions such as cyclobutane pyrimidine dimers (CPDs) and pyrimidine (6-4) pyrimidone photoproducts (6-4PPs); and, in bacterial endospores, spore photoproducts (SPs). Importantly, the lesions formed in higher organisms can lead to disease states including cancer. While the formation, structure, and biological outcomes of pyrimidine dimer lesions have been the focus of much research, less has been known about their fundamental chemical properties until recently. Such an understanding of these lesions may lead to novel means to chemically identify and quantitate their presence in the genome. This review is intended to provide an overview of intra-strand pyrimidine dimer lesions derived from 5'-T-p-T sites with a focus on presenting what is currently known about their individual in vitro alkaline chemical reactivities. Included here are descriptions of investigations of the DNA lesions CPD, 6-4PP, and SP, and, for comparison, the monomeric pyrimidine lesion 5,6-dihydo-2'-deoxyuridine (dHdU). Of interest, the alkaline hydrolyses of these various lesions are all found to be centered on the loss of aromaticity of a lesion Py ring (T) leading to a carbonyl \"hot spot,\" the focal point of initial hydrolytic attack.</p>","PeriodicalId":20133,"journal":{"name":"Photochemistry and Photobiology","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the chemistry of sunlight-induced DNA lesions: A perspective on the alkaline chemical-induced reactivities of photo-damaged pyrimidine intra-strand dimers.\",\"authors\":\"Ritu Chaturvedi, Eric C Long\",\"doi\":\"10.1111/php.14031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Photoexcitation of cellular as well as isolated DNAs upon exposure to the UV portion of sunlight or other UV sources can lead to the covalent dimerization of adjacent intra-strand stacked pyrimidine nucleobase rings (i.e., at 5'-Py-p-Py-3' sites). These modifications generate, in mammalian DNA as well as the DNA of all other forms of life, lesions such as cyclobutane pyrimidine dimers (CPDs) and pyrimidine (6-4) pyrimidone photoproducts (6-4PPs); and, in bacterial endospores, spore photoproducts (SPs). Importantly, the lesions formed in higher organisms can lead to disease states including cancer. While the formation, structure, and biological outcomes of pyrimidine dimer lesions have been the focus of much research, less has been known about their fundamental chemical properties until recently. Such an understanding of these lesions may lead to novel means to chemically identify and quantitate their presence in the genome. This review is intended to provide an overview of intra-strand pyrimidine dimer lesions derived from 5'-T-p-T sites with a focus on presenting what is currently known about their individual in vitro alkaline chemical reactivities. Included here are descriptions of investigations of the DNA lesions CPD, 6-4PP, and SP, and, for comparison, the monomeric pyrimidine lesion 5,6-dihydo-2'-deoxyuridine (dHdU). Of interest, the alkaline hydrolyses of these various lesions are all found to be centered on the loss of aromaticity of a lesion Py ring (T) leading to a carbonyl \\\"hot spot,\\\" the focal point of initial hydrolytic attack.</p>\",\"PeriodicalId\":20133,\"journal\":{\"name\":\"Photochemistry and Photobiology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Photochemistry and Photobiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1111/php.14031\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photochemistry and Photobiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/php.14031","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
细胞和分离的 DNA 在暴露于阳光或其他紫外线源的紫外线部分时,会受到光激发,导致相邻链内堆叠的嘧啶核碱基环(即 5'-Py-p-Py-3' 位点)发生共价二聚化。在哺乳动物 DNA 和所有其他生命形式的 DNA 中,这些修饰会产生环丁烷嘧啶二聚体(CPDs)和嘧啶(6-4)嘧啶酮光产物(6-4PPs)等病变;在细菌内孢子中,则会产生孢子光产物(SPs)。重要的是,在高等生物体内形成的病变可导致包括癌症在内的疾病状态。虽然嘧啶二聚体病变的形成、结构和生物学结果一直是许多研究的重点,但直到最近,人们对其基本化学特性的了解还比较少。对嘧啶二聚体病变的这种了解可能会带来新的手段,通过化学方法识别和量化基因组中的嘧啶二聚体病变。本综述旨在概述源于 5'-T-p-T 位点的链内嘧啶二聚体病变,重点介绍目前已知的关于它们各自的体外碱性化学反应活性。这里包括对 DNA 病变 CPD、6-4PP 和 SP 以及单体嘧啶病变 5,6-二氢-2'-脱氧尿苷 (dHdU) 的研究描述,以作比较。值得注意的是,这些不同病变的碱性水解都以病变 Py 环(T)的芳香性丧失为中心,导致羰基 "热点",即最初水解攻击的焦点。
On the chemistry of sunlight-induced DNA lesions: A perspective on the alkaline chemical-induced reactivities of photo-damaged pyrimidine intra-strand dimers.
Photoexcitation of cellular as well as isolated DNAs upon exposure to the UV portion of sunlight or other UV sources can lead to the covalent dimerization of adjacent intra-strand stacked pyrimidine nucleobase rings (i.e., at 5'-Py-p-Py-3' sites). These modifications generate, in mammalian DNA as well as the DNA of all other forms of life, lesions such as cyclobutane pyrimidine dimers (CPDs) and pyrimidine (6-4) pyrimidone photoproducts (6-4PPs); and, in bacterial endospores, spore photoproducts (SPs). Importantly, the lesions formed in higher organisms can lead to disease states including cancer. While the formation, structure, and biological outcomes of pyrimidine dimer lesions have been the focus of much research, less has been known about their fundamental chemical properties until recently. Such an understanding of these lesions may lead to novel means to chemically identify and quantitate their presence in the genome. This review is intended to provide an overview of intra-strand pyrimidine dimer lesions derived from 5'-T-p-T sites with a focus on presenting what is currently known about their individual in vitro alkaline chemical reactivities. Included here are descriptions of investigations of the DNA lesions CPD, 6-4PP, and SP, and, for comparison, the monomeric pyrimidine lesion 5,6-dihydo-2'-deoxyuridine (dHdU). Of interest, the alkaline hydrolyses of these various lesions are all found to be centered on the loss of aromaticity of a lesion Py ring (T) leading to a carbonyl "hot spot," the focal point of initial hydrolytic attack.
期刊介绍:
Photochemistry and Photobiology publishes original research articles and reviews on current topics in photoscience. Topics span from the primary interaction of light with molecules, cells, and tissue to the subsequent biological responses, representing disciplinary and interdisciplinary research in the fields of chemistry, physics, biology, and medicine. Photochemistry and Photobiology is the official journal of the American Society for Photobiology.