评估用于放射治疗的头颈部拟人多模态(MRI/CT)模型材料的适用性和稳定性。

IF 3.3 3区 医学 Q2 ENGINEERING, BIOMEDICAL Physics in medicine and biology Pub Date : 2024-10-28 DOI:10.1088/1361-6560/ad8830
Meshal Alzahrani, David A Broadbent, Irvin Teh, Bashar Al-Qaisieh, Richard Speight
{"title":"评估用于放射治疗的头颈部拟人多模态(MRI/CT)模型材料的适用性和稳定性。","authors":"Meshal Alzahrani, David A Broadbent, Irvin Teh, Bashar Al-Qaisieh, Richard Speight","doi":"10.1088/1361-6560/ad8830","DOIUrl":null,"url":null,"abstract":"<p><p><i>Objective:</i>This study aims to identify and evaluate suitable and stable materials for developing a head and neck anthropomorphic multimodality phantom for radiotherapy purposes. These materials must mimic human head and neck tissues in both computed tomography (CT) and magnetic resonance imaging (MRI) and maintain stable imaging properties over time and after radiation exposure, including the high levels associated with linear accelerator (linac) use.<i>Approach:</i>Various materials were assessed by measuring their CT numbers and T1 and T2 relaxation times. These measurements were compared to literature values to determine how closely the properties of the candidate materials resemble those of human tissues in the head and neck region. The stability of these properties was evaluated monthly over a year and after radiation exposure to doses up to 1000 Gy. Statistical analyzes were conducted to identify any significant changes over time and after radiation exposure.<i>Main results:</i>10% and 12.6% Polyvinyl alcohol cryogel (PVA-c) both exhibited T1 and T2 relaxation times and CT numbers within the range appropriate for brain grey matter. 14.3% PVA-c and some plastic-based materials matched the MRI properties of brain white matter, with CT numbers close to the clinical range. Additionally, some plastic-based materials showed T1 and T2 relaxation times consistent with MRI properties of fat, although their CT numbers were not suitable. Over time and after irradiation, 10% PVA-c maintained consistent properties for brain grey matter. 12.6% PVA-c's T1 relaxation time decreased beyond the range after the first month.<i>Significance:</i>This study identified 10% PVA-c as a substitute for brain grey matter, demonstrating stable imaging properties over a year and after radiation exposure up to 1000 Gy. However, the results highlight a need for further research to find additional materials to accurately simulate a wider range of human tissues.</p>","PeriodicalId":20185,"journal":{"name":"Physics in medicine and biology","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Assessing suitability and stability of materials for a head and neck anthropomorphic multimodality (MRI/CT) phantoms for radiotherapy.\",\"authors\":\"Meshal Alzahrani, David A Broadbent, Irvin Teh, Bashar Al-Qaisieh, Richard Speight\",\"doi\":\"10.1088/1361-6560/ad8830\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><i>Objective:</i>This study aims to identify and evaluate suitable and stable materials for developing a head and neck anthropomorphic multimodality phantom for radiotherapy purposes. These materials must mimic human head and neck tissues in both computed tomography (CT) and magnetic resonance imaging (MRI) and maintain stable imaging properties over time and after radiation exposure, including the high levels associated with linear accelerator (linac) use.<i>Approach:</i>Various materials were assessed by measuring their CT numbers and T1 and T2 relaxation times. These measurements were compared to literature values to determine how closely the properties of the candidate materials resemble those of human tissues in the head and neck region. The stability of these properties was evaluated monthly over a year and after radiation exposure to doses up to 1000 Gy. Statistical analyzes were conducted to identify any significant changes over time and after radiation exposure.<i>Main results:</i>10% and 12.6% Polyvinyl alcohol cryogel (PVA-c) both exhibited T1 and T2 relaxation times and CT numbers within the range appropriate for brain grey matter. 14.3% PVA-c and some plastic-based materials matched the MRI properties of brain white matter, with CT numbers close to the clinical range. Additionally, some plastic-based materials showed T1 and T2 relaxation times consistent with MRI properties of fat, although their CT numbers were not suitable. Over time and after irradiation, 10% PVA-c maintained consistent properties for brain grey matter. 12.6% PVA-c's T1 relaxation time decreased beyond the range after the first month.<i>Significance:</i>This study identified 10% PVA-c as a substitute for brain grey matter, demonstrating stable imaging properties over a year and after radiation exposure up to 1000 Gy. However, the results highlight a need for further research to find additional materials to accurately simulate a wider range of human tissues.</p>\",\"PeriodicalId\":20185,\"journal\":{\"name\":\"Physics in medicine and biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics in medicine and biology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6560/ad8830\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics in medicine and biology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1361-6560/ad8830","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

目的: 本研究旨在确定和评估合适且稳定的材料,以开发用于放射治疗的头颈部拟人多模态模型。这些材料必须在计算机断层扫描(CT)和磁共振成像(MRI)中模拟人体头颈部组织,并在长时间的辐射照射(包括使用直线加速器(linac)时产生的高水平辐射)后保持稳定的成像特性。将这些测量值与文献值进行比较,以确定候选材料的特性与头颈部人体组织的特性有多接近。在一年的时间里,每月对这些特性的稳定性进行评估,并在接受剂量高达 1000 Gy 的辐射照射后进行评估。主要结果: 10% 和 12.6% 聚乙烯醇冷冻凝胶 (PVA-c) 的 T1 和 T2 弛豫时间和 CT 数值都在适合大脑灰质的范围内。14.3% 的 PVA-c 和一些塑料基材料符合脑白质的磁共振成像特性,CT 值接近临床范围。此外,一些塑料基材料显示的 T1 和 T2 驰豫时间与脂肪的磁共振成像特性一致,尽管它们的 CT 数值并不合适。随着时间的推移和照射后,10% PVA-c 对大脑灰质的特性保持一致。12.6%PVA-c的T1弛豫时间在第一个月后下降,超出了规定范围。不过,研究结果强调了进一步研究的必要性,以便找到更多材料来精确模拟更广泛的人体组织。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Assessing suitability and stability of materials for a head and neck anthropomorphic multimodality (MRI/CT) phantoms for radiotherapy.

Objective:This study aims to identify and evaluate suitable and stable materials for developing a head and neck anthropomorphic multimodality phantom for radiotherapy purposes. These materials must mimic human head and neck tissues in both computed tomography (CT) and magnetic resonance imaging (MRI) and maintain stable imaging properties over time and after radiation exposure, including the high levels associated with linear accelerator (linac) use.Approach:Various materials were assessed by measuring their CT numbers and T1 and T2 relaxation times. These measurements were compared to literature values to determine how closely the properties of the candidate materials resemble those of human tissues in the head and neck region. The stability of these properties was evaluated monthly over a year and after radiation exposure to doses up to 1000 Gy. Statistical analyzes were conducted to identify any significant changes over time and after radiation exposure.Main results:10% and 12.6% Polyvinyl alcohol cryogel (PVA-c) both exhibited T1 and T2 relaxation times and CT numbers within the range appropriate for brain grey matter. 14.3% PVA-c and some plastic-based materials matched the MRI properties of brain white matter, with CT numbers close to the clinical range. Additionally, some plastic-based materials showed T1 and T2 relaxation times consistent with MRI properties of fat, although their CT numbers were not suitable. Over time and after irradiation, 10% PVA-c maintained consistent properties for brain grey matter. 12.6% PVA-c's T1 relaxation time decreased beyond the range after the first month.Significance:This study identified 10% PVA-c as a substitute for brain grey matter, demonstrating stable imaging properties over a year and after radiation exposure up to 1000 Gy. However, the results highlight a need for further research to find additional materials to accurately simulate a wider range of human tissues.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physics in medicine and biology
Physics in medicine and biology 医学-工程:生物医学
CiteScore
6.50
自引率
14.30%
发文量
409
审稿时长
2 months
期刊介绍: The development and application of theoretical, computational and experimental physics to medicine, physiology and biology. Topics covered are: therapy physics (including ionizing and non-ionizing radiation); biomedical imaging (e.g. x-ray, magnetic resonance, ultrasound, optical and nuclear imaging); image-guided interventions; image reconstruction and analysis (including kinetic modelling); artificial intelligence in biomedical physics and analysis; nanoparticles in imaging and therapy; radiobiology; radiation protection and patient dose monitoring; radiation dosimetry
期刊最新文献
Noise & mottle suppression methods for cumulative Cherenkov images of radiation therapy delivery. Quantitative assessment of areal bone mineral density using multi-energy localizer radiographs from photon-counting detector CT. TMAA-net: tensor-domain multi-planal anti-aliasing network for sparse-view CT image reconstruction. Imaging error reduction in radial cine-MRI with deep learning-based intra-frame motion compensation. Investigation of scatter energy window width and count levels for deep learning-based attenuation map estimation in cardiac SPECT/CT imaging.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1