{"title":"抗体特异性的推断与设计:从实验到模型再到实验","authors":"Jorge Fernandez-de-Cossio-Diaz, Guido Uguzzoni, Kévin Ricard, Francesca Anselmi, Clément Nizak, Andrea Pagnani, Olivier Rivoire","doi":"10.1371/journal.pcbi.1012522","DOIUrl":null,"url":null,"abstract":"<p><p>Exquisite binding specificity is essential for many protein functions but is difficult to engineer. Many biotechnological or biomedical applications require the discrimination of very similar ligands, which poses the challenge of designing protein sequences with highly specific binding profiles. Experimental methods for generating specific binders rely on in vitro selection, which is limited in terms of library size and control over specificity profiles. Additional control was recently demonstrated through high-throughput sequencing and downstream computational analysis. Here we follow such an approach to demonstrate the design of specific antibodies beyond those probed experimentally. We do so in a context where very similar epitopes need to be discriminated, and where these epitopes cannot be experimentally dissociated from other epitopes present in the selection. Our approach involves the identification of different binding modes, each associated with a particular ligand against which the antibodies are either selected or not. Using data from phage display experiments, we show that the model successfully disentangles these modes, even when they are associated with chemically very similar ligands. Additionally, we demonstrate and validate experimentally the computational design of antibodies with customized specificity profiles, either with specific high affinity for a particular target ligand, or with cross-specificity for multiple target ligands. Overall, our results showcase the potential of leveraging a biophysical model learned from selections against multiple ligands to design proteins with tailored specificity, with applications to protein engineering extending beyond the design of antibodies.</p>","PeriodicalId":20241,"journal":{"name":"PLoS Computational Biology","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11501025/pdf/","citationCount":"0","resultStr":"{\"title\":\"Inference and design of antibody specificity: From experiments to models and back.\",\"authors\":\"Jorge Fernandez-de-Cossio-Diaz, Guido Uguzzoni, Kévin Ricard, Francesca Anselmi, Clément Nizak, Andrea Pagnani, Olivier Rivoire\",\"doi\":\"10.1371/journal.pcbi.1012522\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Exquisite binding specificity is essential for many protein functions but is difficult to engineer. Many biotechnological or biomedical applications require the discrimination of very similar ligands, which poses the challenge of designing protein sequences with highly specific binding profiles. Experimental methods for generating specific binders rely on in vitro selection, which is limited in terms of library size and control over specificity profiles. Additional control was recently demonstrated through high-throughput sequencing and downstream computational analysis. Here we follow such an approach to demonstrate the design of specific antibodies beyond those probed experimentally. We do so in a context where very similar epitopes need to be discriminated, and where these epitopes cannot be experimentally dissociated from other epitopes present in the selection. Our approach involves the identification of different binding modes, each associated with a particular ligand against which the antibodies are either selected or not. Using data from phage display experiments, we show that the model successfully disentangles these modes, even when they are associated with chemically very similar ligands. Additionally, we demonstrate and validate experimentally the computational design of antibodies with customized specificity profiles, either with specific high affinity for a particular target ligand, or with cross-specificity for multiple target ligands. Overall, our results showcase the potential of leveraging a biophysical model learned from selections against multiple ligands to design proteins with tailored specificity, with applications to protein engineering extending beyond the design of antibodies.</p>\",\"PeriodicalId\":20241,\"journal\":{\"name\":\"PLoS Computational Biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11501025/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PLoS Computational Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1371/journal.pcbi.1012522\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Computational Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1371/journal.pcbi.1012522","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Inference and design of antibody specificity: From experiments to models and back.
Exquisite binding specificity is essential for many protein functions but is difficult to engineer. Many biotechnological or biomedical applications require the discrimination of very similar ligands, which poses the challenge of designing protein sequences with highly specific binding profiles. Experimental methods for generating specific binders rely on in vitro selection, which is limited in terms of library size and control over specificity profiles. Additional control was recently demonstrated through high-throughput sequencing and downstream computational analysis. Here we follow such an approach to demonstrate the design of specific antibodies beyond those probed experimentally. We do so in a context where very similar epitopes need to be discriminated, and where these epitopes cannot be experimentally dissociated from other epitopes present in the selection. Our approach involves the identification of different binding modes, each associated with a particular ligand against which the antibodies are either selected or not. Using data from phage display experiments, we show that the model successfully disentangles these modes, even when they are associated with chemically very similar ligands. Additionally, we demonstrate and validate experimentally the computational design of antibodies with customized specificity profiles, either with specific high affinity for a particular target ligand, or with cross-specificity for multiple target ligands. Overall, our results showcase the potential of leveraging a biophysical model learned from selections against multiple ligands to design proteins with tailored specificity, with applications to protein engineering extending beyond the design of antibodies.
期刊介绍:
PLOS Computational Biology features works of exceptional significance that further our understanding of living systems at all scales—from molecules and cells, to patient populations and ecosystems—through the application of computational methods. Readers include life and computational scientists, who can take the important findings presented here to the next level of discovery.
Research articles must be declared as belonging to a relevant section. More information about the sections can be found in the submission guidelines.
Research articles should model aspects of biological systems, demonstrate both methodological and scientific novelty, and provide profound new biological insights.
Generally, reliability and significance of biological discovery through computation should be validated and enriched by experimental studies. Inclusion of experimental validation is not required for publication, but should be referenced where possible. Inclusion of experimental validation of a modest biological discovery through computation does not render a manuscript suitable for PLOS Computational Biology.
Research articles specifically designated as Methods papers should describe outstanding methods of exceptional importance that have been shown, or have the promise to provide new biological insights. The method must already be widely adopted, or have the promise of wide adoption by a broad community of users. Enhancements to existing published methods will only be considered if those enhancements bring exceptional new capabilities.