新的、完整的柠檬黄单胞菌(Xanthomonas citri pv. mangiferaeindicae)环化基因组是通过短读码和长读码联合组装产生的,它揭示了十年前在布基纳法索芒果和腰果上出现的菌株。

IF 2.6 2区 农林科学 Q2 PLANT SCIENCES Phytopathology Pub Date : 2024-10-10 DOI:10.1094/PHYTO-08-24-0267-SC
Claudine Boyer, Pierre Lefeuvre, Cyrille Zombre, Adrien Rieux, Issa Wonni, Lionel Gagnevin, Olivier Pruvost
{"title":"新的、完整的柠檬黄单胞菌(Xanthomonas citri pv. mangiferaeindicae)环化基因组是通过短读码和长读码联合组装产生的,它揭示了十年前在布基纳法索芒果和腰果上出现的菌株。","authors":"Claudine Boyer, Pierre Lefeuvre, Cyrille Zombre, Adrien Rieux, Issa Wonni, Lionel Gagnevin, Olivier Pruvost","doi":"10.1094/PHYTO-08-24-0267-SC","DOIUrl":null,"url":null,"abstract":"<p><p>We report high-quality genomes of three strains of <i>Xanthomonas citri</i> pv. <i>mangiferaeindicae</i> (<i>Xcm</i>), the causal agent of mango bacterial canker disease, including the pathotype strain of this pathovar and two strains from Burkina Faso that emerged a decade ago. These strains hosted two to three plasmids of sizes ranging from 19 to 86 kb. Genome mining revealed the presence of several secretion systems (SS) and effectors involved in virulence of xanthomonads with (i) a T1SS of the hlyDB group, (ii) xps and xcs T2SSs, (iii) a T3SS with several type three effectors (T3E), including transcription activator-like effectors (TALE), (iv) several T4SSs associated with plasmid or integrative conjugative elements (ICE) mobility, (v) three T5SS subclasses (Va, Vb and Vc) and (vi) a single i3* T6SS. The two strains isolated in Burkina Faso from mango (<i>Mangifera indica</i> L.) and cashew (<i>Anacardium occidentale</i> L.) differed by only 14 SNPs and shared identical secretion systems and T3E repertoire. Several TALEs were identified in each strain, some of which may target plant genes previously found implicated in disease development in other xanthomonad-associated pathosystems. These results support the emergence in Burkina Faso a decade ago of very closely related strains that became epidemic on mango and cashew, i.e., two distinct host genera of a same plant family. These new genomic resources will contribute to better understand the biology and evolution of this agriculturally major crop pathogen.</p>","PeriodicalId":20410,"journal":{"name":"Phytopathology","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New, complete circularized genomes of <i>Xanthomonas citri</i> pv. <i>mangiferaeindicae</i> produced from short- and long-read co-assembly shed light on strains that emerged a decade ago on mango and cashew in Burkina Faso.\",\"authors\":\"Claudine Boyer, Pierre Lefeuvre, Cyrille Zombre, Adrien Rieux, Issa Wonni, Lionel Gagnevin, Olivier Pruvost\",\"doi\":\"10.1094/PHYTO-08-24-0267-SC\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We report high-quality genomes of three strains of <i>Xanthomonas citri</i> pv. <i>mangiferaeindicae</i> (<i>Xcm</i>), the causal agent of mango bacterial canker disease, including the pathotype strain of this pathovar and two strains from Burkina Faso that emerged a decade ago. These strains hosted two to three plasmids of sizes ranging from 19 to 86 kb. Genome mining revealed the presence of several secretion systems (SS) and effectors involved in virulence of xanthomonads with (i) a T1SS of the hlyDB group, (ii) xps and xcs T2SSs, (iii) a T3SS with several type three effectors (T3E), including transcription activator-like effectors (TALE), (iv) several T4SSs associated with plasmid or integrative conjugative elements (ICE) mobility, (v) three T5SS subclasses (Va, Vb and Vc) and (vi) a single i3* T6SS. The two strains isolated in Burkina Faso from mango (<i>Mangifera indica</i> L.) and cashew (<i>Anacardium occidentale</i> L.) differed by only 14 SNPs and shared identical secretion systems and T3E repertoire. Several TALEs were identified in each strain, some of which may target plant genes previously found implicated in disease development in other xanthomonad-associated pathosystems. These results support the emergence in Burkina Faso a decade ago of very closely related strains that became epidemic on mango and cashew, i.e., two distinct host genera of a same plant family. These new genomic resources will contribute to better understand the biology and evolution of this agriculturally major crop pathogen.</p>\",\"PeriodicalId\":20410,\"journal\":{\"name\":\"Phytopathology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Phytopathology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1094/PHYTO-08-24-0267-SC\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Phytopathology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1094/PHYTO-08-24-0267-SC","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

我们报告了芒果细菌性腐烂病病原菌柠檬黄单胞菌(Xanthomonas citri pv. mangiferaeindicae,Xcm)三株菌株的高质量基因组,包括该病原菌的病原型菌株和十年前出现的两株来自布基纳法索的菌株。这些菌株含有两到三个质粒,大小从 19 kb 到 86 kb 不等。基因组挖掘发现了黄单胞菌毒力涉及的几种分泌系统(SS)和效应器:(i) hlyDB 组的 T1SS,(ii) xps 和 xcs T2SS,(iii) 带有几种三型效应器(T3E)的 T3SS、(iv)几个与质粒或整合共轭元件(ICE)移动性相关的 T4SS,(v)三个 T5SS 亚类(Va、Vb 和 Vc),(vi)一个 i3* T6SS。在布基纳法索从芒果(Mangifera indica L.)和腰果(Anacardium occidentale L.)中分离出的两株菌株仅有 14 个 SNPs 的差异,并具有相同的分泌系统和 T3E 基因库。在每个菌株中都发现了几个 TALEs,其中一些可能是以前在其他黄单胞菌相关病理系统中发现的与疾病发展有关的植物靶基因。这些结果支持了十年前在布基纳法索出现的密切相关的菌株在芒果和腰果上的流行,即同一植物家族中两个不同的宿主属。这些新的基因组资源将有助于更好地了解这种农业上主要作物病原体的生物学和进化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
New, complete circularized genomes of Xanthomonas citri pv. mangiferaeindicae produced from short- and long-read co-assembly shed light on strains that emerged a decade ago on mango and cashew in Burkina Faso.

We report high-quality genomes of three strains of Xanthomonas citri pv. mangiferaeindicae (Xcm), the causal agent of mango bacterial canker disease, including the pathotype strain of this pathovar and two strains from Burkina Faso that emerged a decade ago. These strains hosted two to three plasmids of sizes ranging from 19 to 86 kb. Genome mining revealed the presence of several secretion systems (SS) and effectors involved in virulence of xanthomonads with (i) a T1SS of the hlyDB group, (ii) xps and xcs T2SSs, (iii) a T3SS with several type three effectors (T3E), including transcription activator-like effectors (TALE), (iv) several T4SSs associated with plasmid or integrative conjugative elements (ICE) mobility, (v) three T5SS subclasses (Va, Vb and Vc) and (vi) a single i3* T6SS. The two strains isolated in Burkina Faso from mango (Mangifera indica L.) and cashew (Anacardium occidentale L.) differed by only 14 SNPs and shared identical secretion systems and T3E repertoire. Several TALEs were identified in each strain, some of which may target plant genes previously found implicated in disease development in other xanthomonad-associated pathosystems. These results support the emergence in Burkina Faso a decade ago of very closely related strains that became epidemic on mango and cashew, i.e., two distinct host genera of a same plant family. These new genomic resources will contribute to better understand the biology and evolution of this agriculturally major crop pathogen.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Phytopathology
Phytopathology 生物-植物科学
CiteScore
5.90
自引率
9.40%
发文量
505
审稿时长
4-8 weeks
期刊介绍: Phytopathology publishes articles on fundamental research that advances understanding of the nature of plant diseases, the agents that cause them, their spread, the losses they cause, and measures that can be used to control them. Phytopathology considers manuscripts covering all aspects of plant diseases including bacteriology, host-parasite biochemistry and cell biology, biological control, disease control and pest management, description of new pathogen species description of new pathogen species, ecology and population biology, epidemiology, disease etiology, host genetics and resistance, mycology, nematology, plant stress and abiotic disorders, postharvest pathology and mycotoxins, and virology. Papers dealing mainly with taxonomy, such as descriptions of new plant pathogen taxa are acceptable if they include plant disease research results such as pathogenicity, host range, etc. Taxonomic papers that focus on classification, identification, and nomenclature below the subspecies level may also be submitted to Phytopathology.
期刊最新文献
Biphenyl and dibenzofuran phytoalexins differentially inhibit root-associated microbiota in apple, including fungal and oomycetal replant disease pathogens. Loop-mediated isothermal amplification detection of Phytophthora kernoviae, Phytophthora ramorum, and the P. ramorum NA1 lineage on a microfluidic chip and smartphone platform. Effectiveness and Genetic Control of Trichoderma spp. as a Biological Control of Wheat Powdery Mildew Disease. Host-Driven Selection, Revealed by Comparative Analysis of Xanthomonas Type III Secretion Effectoromes, Unveils Novel Recognized Effectors. Combining Single-Gene-Resistant and Pyramided Cultivars of Perennial Crops in Agricultural Landscapes Compromises Pyramiding Benefits in Most Production Situations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1