{"title":"15 种亚硝胺药物相关杂质在人类 TK6 细胞中的突变性和遗传毒性评估。","authors":"","doi":"10.1016/j.yrtph.2024.105730","DOIUrl":null,"url":null,"abstract":"<div><div>Nitrosamine drug substance-related impurities (NDSRIs) are a sub-category of <em>N</em>-nitrosamine drug impurities that share structural similarity to the corresponding active pharmaceutical ingredient. The mutagenicity of NDSRIs is poorly understood. We previously tested a series of NDSRIs using the Enhanced Ames Test (EAT). In this follow-up study, we further examined the genotoxicity and mutagenicity of 15 of these NDSRIs in human TK6 cells. Seven EAT-positive NDSRIs, including <em>N</em>-nitroso-nortriptyline, <em>N</em>-nitroso-fluoxetine, <em>N</em>-nitroso-desmethyl-diphenhydramine, <em>N</em>-nitroso-duloxetine, <em>N</em>-nitroso-lorcaserin, <em>N</em>-nitroso-varenicline, and <em>N</em>-nitroso-sertraline, induced concentration-dependent increases in micronuclei after bioactivation with hamster liver S9. These NDSRIs were also mutagenic in the <em>TK</em> and <em>HPRT</em> gene mutation assays, consistent with their positive EAT results. In the presence of hamster liver S9, the eight EAT-negative NDSRIs were negative in the micronucleus assay and negative for mutation induction. Using TK6 cells endogenously expressing a single human cytochrome P450 (CYP), we found that CYP2C19, CYP2B6, CYP2A6, and CYP3A4 are key enzymes activating the genotoxicity and mutagenicity of these NDSRIs. Overall, the hamster S9-mediated TK6 cell mutagenicity results agreed with those observed in the EAT, indicating consistency in the mutagenic responses produced by NDSRIs across different testing systems. These data support the use of EAT for hazard identification and safety assessment of NDSRIs.</div></div>","PeriodicalId":20852,"journal":{"name":"Regulatory Toxicology and Pharmacology","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2024-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mutagenicity and genotoxicity evaluation of 15 nitrosamine drug substance-related impurities in human TK6 cells\",\"authors\":\"\",\"doi\":\"10.1016/j.yrtph.2024.105730\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Nitrosamine drug substance-related impurities (NDSRIs) are a sub-category of <em>N</em>-nitrosamine drug impurities that share structural similarity to the corresponding active pharmaceutical ingredient. The mutagenicity of NDSRIs is poorly understood. We previously tested a series of NDSRIs using the Enhanced Ames Test (EAT). In this follow-up study, we further examined the genotoxicity and mutagenicity of 15 of these NDSRIs in human TK6 cells. Seven EAT-positive NDSRIs, including <em>N</em>-nitroso-nortriptyline, <em>N</em>-nitroso-fluoxetine, <em>N</em>-nitroso-desmethyl-diphenhydramine, <em>N</em>-nitroso-duloxetine, <em>N</em>-nitroso-lorcaserin, <em>N</em>-nitroso-varenicline, and <em>N</em>-nitroso-sertraline, induced concentration-dependent increases in micronuclei after bioactivation with hamster liver S9. These NDSRIs were also mutagenic in the <em>TK</em> and <em>HPRT</em> gene mutation assays, consistent with their positive EAT results. In the presence of hamster liver S9, the eight EAT-negative NDSRIs were negative in the micronucleus assay and negative for mutation induction. Using TK6 cells endogenously expressing a single human cytochrome P450 (CYP), we found that CYP2C19, CYP2B6, CYP2A6, and CYP3A4 are key enzymes activating the genotoxicity and mutagenicity of these NDSRIs. Overall, the hamster S9-mediated TK6 cell mutagenicity results agreed with those observed in the EAT, indicating consistency in the mutagenic responses produced by NDSRIs across different testing systems. These data support the use of EAT for hazard identification and safety assessment of NDSRIs.</div></div>\",\"PeriodicalId\":20852,\"journal\":{\"name\":\"Regulatory Toxicology and Pharmacology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Regulatory Toxicology and Pharmacology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0273230024001715\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, LEGAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Regulatory Toxicology and Pharmacology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0273230024001715","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, LEGAL","Score":null,"Total":0}
Mutagenicity and genotoxicity evaluation of 15 nitrosamine drug substance-related impurities in human TK6 cells
Nitrosamine drug substance-related impurities (NDSRIs) are a sub-category of N-nitrosamine drug impurities that share structural similarity to the corresponding active pharmaceutical ingredient. The mutagenicity of NDSRIs is poorly understood. We previously tested a series of NDSRIs using the Enhanced Ames Test (EAT). In this follow-up study, we further examined the genotoxicity and mutagenicity of 15 of these NDSRIs in human TK6 cells. Seven EAT-positive NDSRIs, including N-nitroso-nortriptyline, N-nitroso-fluoxetine, N-nitroso-desmethyl-diphenhydramine, N-nitroso-duloxetine, N-nitroso-lorcaserin, N-nitroso-varenicline, and N-nitroso-sertraline, induced concentration-dependent increases in micronuclei after bioactivation with hamster liver S9. These NDSRIs were also mutagenic in the TK and HPRT gene mutation assays, consistent with their positive EAT results. In the presence of hamster liver S9, the eight EAT-negative NDSRIs were negative in the micronucleus assay and negative for mutation induction. Using TK6 cells endogenously expressing a single human cytochrome P450 (CYP), we found that CYP2C19, CYP2B6, CYP2A6, and CYP3A4 are key enzymes activating the genotoxicity and mutagenicity of these NDSRIs. Overall, the hamster S9-mediated TK6 cell mutagenicity results agreed with those observed in the EAT, indicating consistency in the mutagenic responses produced by NDSRIs across different testing systems. These data support the use of EAT for hazard identification and safety assessment of NDSRIs.
期刊介绍:
Regulatory Toxicology and Pharmacology publishes peer reviewed articles that involve the generation, evaluation, and interpretation of experimental animal and human data that are of direct importance and relevance for regulatory authorities with respect to toxicological and pharmacological regulations in society. All peer-reviewed articles that are published should be devoted to improve the protection of human health and environment. Reviews and discussions are welcomed that address legal and/or regulatory decisions with respect to risk assessment and management of toxicological and pharmacological compounds on a scientific basis. It addresses an international readership of scientists, risk assessors and managers, and other professionals active in the field of human and environmental health.
Types of peer-reviewed articles published:
-Original research articles of relevance for regulatory aspects covering aspects including, but not limited to:
1.Factors influencing human sensitivity
2.Exposure science related to risk assessment
3.Alternative toxicological test methods
4.Frameworks for evaluation and integration of data in regulatory evaluations
5.Harmonization across regulatory agencies
6.Read-across methods and evaluations
-Contemporary Reviews on policy related Research issues
-Letters to the Editor
-Guest Editorials (by Invitation)