通过载气流速调节增强传感信号,准确区分复杂气味。

IF 7.4 3区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Science and Technology of Advanced Materials Pub Date : 2024-09-24 eCollection Date: 2024-01-01 DOI:10.1080/14686996.2024.2408212
Meng-Qun Feng, Tanju Yildirim, Kosuke Minami, Kota Shiba, Genki Yoshikawa
{"title":"通过载气流速调节增强传感信号,准确区分复杂气味。","authors":"Meng-Qun Feng, Tanju Yildirim, Kosuke Minami, Kota Shiba, Genki Yoshikawa","doi":"10.1080/14686996.2024.2408212","DOIUrl":null,"url":null,"abstract":"<p><p>For olfactory sensors, clear differentiation of complex odour samples requires diverse information. To obtain such information, hardware modifications, such as introducing additional channels with different physical/chemical properties, are usually needed. In this study, we present a new approach to augmenting the sensing signals of an olfactory sensor by modulating the flow rate of the carrier gas. The headspace vapour of complex odours is measured using a sensing system of nanomechanical sensor (Membrane-type Surface stress Sensor, MSS). The resulting data set is quantitatively evaluated using the Davies-Bouldin index (DBI) of principal component analysis (PCA). The increasing number of sensing signals obtained at different gas flow rates leads to a decrease in the DBI, achieving better cluster separation between different odours. Such gas flow effects can be attributed to several factors, including the sample evaporation and the equilibrium of the gas-liquid and gas-solid interfaces. Proton-transfer-reaction time-of-flight mass spectrometry (PTR-TOF-MS) experiments reveal that the compositions of odour samples vary with the different gas flow rates. It is demonstrated that a simple technique for modulating gas flow rates can significantly improve the differentiation performance of complex odours, providing an additional degree of freedom in olfactory sensing.</p>","PeriodicalId":21588,"journal":{"name":"Science and Technology of Advanced Materials","volume":"25 1","pages":"2408212"},"PeriodicalIF":7.4000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11486318/pdf/","citationCount":"0","resultStr":"{\"title\":\"Sensing signal augmentation by flow rate modulation of carrier gas for accurate differentiation of complex odours.\",\"authors\":\"Meng-Qun Feng, Tanju Yildirim, Kosuke Minami, Kota Shiba, Genki Yoshikawa\",\"doi\":\"10.1080/14686996.2024.2408212\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>For olfactory sensors, clear differentiation of complex odour samples requires diverse information. To obtain such information, hardware modifications, such as introducing additional channels with different physical/chemical properties, are usually needed. In this study, we present a new approach to augmenting the sensing signals of an olfactory sensor by modulating the flow rate of the carrier gas. The headspace vapour of complex odours is measured using a sensing system of nanomechanical sensor (Membrane-type Surface stress Sensor, MSS). The resulting data set is quantitatively evaluated using the Davies-Bouldin index (DBI) of principal component analysis (PCA). The increasing number of sensing signals obtained at different gas flow rates leads to a decrease in the DBI, achieving better cluster separation between different odours. Such gas flow effects can be attributed to several factors, including the sample evaporation and the equilibrium of the gas-liquid and gas-solid interfaces. Proton-transfer-reaction time-of-flight mass spectrometry (PTR-TOF-MS) experiments reveal that the compositions of odour samples vary with the different gas flow rates. It is demonstrated that a simple technique for modulating gas flow rates can significantly improve the differentiation performance of complex odours, providing an additional degree of freedom in olfactory sensing.</p>\",\"PeriodicalId\":21588,\"journal\":{\"name\":\"Science and Technology of Advanced Materials\",\"volume\":\"25 1\",\"pages\":\"2408212\"},\"PeriodicalIF\":7.4000,\"publicationDate\":\"2024-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11486318/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science and Technology of Advanced Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1080/14686996.2024.2408212\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science and Technology of Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/14686996.2024.2408212","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

对于嗅觉传感器来说,要明确区分复杂的气味样本需要多种信息。要获得这些信息,通常需要对硬件进行修改,例如引入具有不同物理/化学特性的额外通道。在这项研究中,我们提出了一种通过调节载气流速来增强嗅觉传感器传感信号的新方法。使用纳米机械传感器(膜式表面应力传感器,MSS)传感系统测量复杂气味的顶空蒸气。利用主成分分析(PCA)的戴维斯-博尔丁指数(DBI)对所得数据集进行定量评估。在不同气体流速下获得的传感信号数量不断增加,导致 DBI 下降,从而更好地实现了不同气味之间的聚类分离。这种气体流量效应可归因于多个因素,包括样品蒸发以及气液和气固界面的平衡。质子转移反应飞行时间质谱(PTR-TOF-MS)实验表明,气味样品的成分随不同的气体流速而变化。实验证明,调节气体流速的简单技术可以显著提高复杂气味的分辨性能,为嗅觉传感提供额外的自由度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Sensing signal augmentation by flow rate modulation of carrier gas for accurate differentiation of complex odours.

For olfactory sensors, clear differentiation of complex odour samples requires diverse information. To obtain such information, hardware modifications, such as introducing additional channels with different physical/chemical properties, are usually needed. In this study, we present a new approach to augmenting the sensing signals of an olfactory sensor by modulating the flow rate of the carrier gas. The headspace vapour of complex odours is measured using a sensing system of nanomechanical sensor (Membrane-type Surface stress Sensor, MSS). The resulting data set is quantitatively evaluated using the Davies-Bouldin index (DBI) of principal component analysis (PCA). The increasing number of sensing signals obtained at different gas flow rates leads to a decrease in the DBI, achieving better cluster separation between different odours. Such gas flow effects can be attributed to several factors, including the sample evaporation and the equilibrium of the gas-liquid and gas-solid interfaces. Proton-transfer-reaction time-of-flight mass spectrometry (PTR-TOF-MS) experiments reveal that the compositions of odour samples vary with the different gas flow rates. It is demonstrated that a simple technique for modulating gas flow rates can significantly improve the differentiation performance of complex odours, providing an additional degree of freedom in olfactory sensing.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science and Technology of Advanced Materials
Science and Technology of Advanced Materials 工程技术-材料科学:综合
CiteScore
10.60
自引率
3.60%
发文量
52
审稿时长
4.8 months
期刊介绍: Science and Technology of Advanced Materials (STAM) is a leading open access, international journal for outstanding research articles across all aspects of materials science. Our audience is the international community across the disciplines of materials science, physics, chemistry, biology as well as engineering. The journal covers a broad spectrum of topics including functional and structural materials, synthesis and processing, theoretical analyses, characterization and properties of materials. Emphasis is placed on the interdisciplinary nature of materials science and issues at the forefront of the field, such as energy and environmental issues, as well as medical and bioengineering applications. Of particular interest are research papers on the following topics: Materials informatics and materials genomics Materials for 3D printing and additive manufacturing Nanostructured/nanoscale materials and nanodevices Bio-inspired, biomedical, and biological materials; nanomedicine, and novel technologies for clinical and medical applications Materials for energy and environment, next-generation photovoltaics, and green technologies Advanced structural materials, materials for extreme conditions.
期刊最新文献
Tracking the evolution of the morphology and stress distribution of SIS thermoplastic elastomers under tension using atomic force microscopy Robust and orange-yellow-emitting Sr-rich polytypoid α-SiAlON (Sr3Si24Al6N40:Eu2+) phosphor for white LEDs Multicrystalline informatics: a methodology to advance materials science by unraveling complex phenomena A comprehensive data network for data-driven study of battery materials Lightweight acoustic hyperbolic paraboloid diaphragms with graphene through self-assembly nanoarchitectonics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1