Diana L Blaney, Karl Hibbitts, Serina Diniega, Ashley Gerard Davies, Roger N Clark, Robert O Green, Matthew Hedman, Yves Langevin, Jonathan Lunine, Thomas B McCord, Scott Murchie, Chris Paranicas, Frank Seelos, Jason M Soderblom, Morgan L Cable, Regina Eckert, David R Thompson, Samantha K Trumbo, Carl Bruce, Sarah R Lundeen, Holly A Bender, Mark C Helmlinger, Lori B Moore, Pantazis Mouroulis, Zachary Small, Hong Tang, Byron Van Gorp, Peter W Sullivan, Shannon Zareh, Jose I Rodriquez, Ian McKinley, Daniel V Hahn, Matthew Bowers, Ramsey Hourani, Brian A Bryce, Danielle Nuding, Zachery Bailey, Alessandro Rettura, Evan D Zarate
{"title":"欧罗巴制图成像分光计(MISE)。","authors":"Diana L Blaney, Karl Hibbitts, Serina Diniega, Ashley Gerard Davies, Roger N Clark, Robert O Green, Matthew Hedman, Yves Langevin, Jonathan Lunine, Thomas B McCord, Scott Murchie, Chris Paranicas, Frank Seelos, Jason M Soderblom, Morgan L Cable, Regina Eckert, David R Thompson, Samantha K Trumbo, Carl Bruce, Sarah R Lundeen, Holly A Bender, Mark C Helmlinger, Lori B Moore, Pantazis Mouroulis, Zachary Small, Hong Tang, Byron Van Gorp, Peter W Sullivan, Shannon Zareh, Jose I Rodriquez, Ian McKinley, Daniel V Hahn, Matthew Bowers, Ramsey Hourani, Brian A Bryce, Danielle Nuding, Zachery Bailey, Alessandro Rettura, Evan D Zarate","doi":"10.1007/s11214-024-01097-8","DOIUrl":null,"url":null,"abstract":"<p><p>The Mapping Imaging Spectrometer for Europa (MISE) is an infrared compositional instrument that will fly on NASA's Europa Clipper mission to the Jupiter system. MISE is designed to meet the Level-1 science requirements related to the mission's composition science objective to \"understand the habitability of Europa's ocean through composition and chemistry\" and to contribute to the geology science and ice shell and ocean objectives, thereby helping Europa Clipper achieve its mission goal to \"explore Europa to investigate its habitability.\" MISE has a mass of 65 kg and uses an energy per flyby of 75.2 W-h. MISE will detect illumination from 0.8 to 5 μm with 10 nm spectral resolution, a spatial sampling of 25 m per pixel at 100 km altitude, and 300 cross-track pixels, enabling discrimination among the two principal states of water ice on Europa, identification of the main non-ice components of interest: salts, acids, and organics, and detection of trace materials as well as some thermal signatures. Furthermore, the spatial resolution and global coverage that MISE will achieve will be complemented by the higher spectral resolution of some Earth-based assets. MISE, combined with observations collected by the rest of the Europa Clipper payload, will enable significant advances in our understanding of how the large-scale structure of Europa's surface is shaped by geological processes and inform our understanding of the surface at microscale. This paper describes the planned MISE science investigations, instrument design, concept of operations, and data products.</p>","PeriodicalId":9,"journal":{"name":"ACS Catalysis ","volume":null,"pages":null},"PeriodicalIF":11.3000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11464581/pdf/","citationCount":"0","resultStr":"{\"title\":\"The Mapping Imaging Spectrometer for Europa (MISE).\",\"authors\":\"Diana L Blaney, Karl Hibbitts, Serina Diniega, Ashley Gerard Davies, Roger N Clark, Robert O Green, Matthew Hedman, Yves Langevin, Jonathan Lunine, Thomas B McCord, Scott Murchie, Chris Paranicas, Frank Seelos, Jason M Soderblom, Morgan L Cable, Regina Eckert, David R Thompson, Samantha K Trumbo, Carl Bruce, Sarah R Lundeen, Holly A Bender, Mark C Helmlinger, Lori B Moore, Pantazis Mouroulis, Zachary Small, Hong Tang, Byron Van Gorp, Peter W Sullivan, Shannon Zareh, Jose I Rodriquez, Ian McKinley, Daniel V Hahn, Matthew Bowers, Ramsey Hourani, Brian A Bryce, Danielle Nuding, Zachery Bailey, Alessandro Rettura, Evan D Zarate\",\"doi\":\"10.1007/s11214-024-01097-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The Mapping Imaging Spectrometer for Europa (MISE) is an infrared compositional instrument that will fly on NASA's Europa Clipper mission to the Jupiter system. MISE is designed to meet the Level-1 science requirements related to the mission's composition science objective to \\\"understand the habitability of Europa's ocean through composition and chemistry\\\" and to contribute to the geology science and ice shell and ocean objectives, thereby helping Europa Clipper achieve its mission goal to \\\"explore Europa to investigate its habitability.\\\" MISE has a mass of 65 kg and uses an energy per flyby of 75.2 W-h. MISE will detect illumination from 0.8 to 5 μm with 10 nm spectral resolution, a spatial sampling of 25 m per pixel at 100 km altitude, and 300 cross-track pixels, enabling discrimination among the two principal states of water ice on Europa, identification of the main non-ice components of interest: salts, acids, and organics, and detection of trace materials as well as some thermal signatures. Furthermore, the spatial resolution and global coverage that MISE will achieve will be complemented by the higher spectral resolution of some Earth-based assets. MISE, combined with observations collected by the rest of the Europa Clipper payload, will enable significant advances in our understanding of how the large-scale structure of Europa's surface is shaped by geological processes and inform our understanding of the surface at microscale. This paper describes the planned MISE science investigations, instrument design, concept of operations, and data products.</p>\",\"PeriodicalId\":9,\"journal\":{\"name\":\"ACS Catalysis \",\"volume\":null,\"pages\":null},\"PeriodicalIF\":11.3000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11464581/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Catalysis \",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1007/s11214-024-01097-8\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/9 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Catalysis ","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1007/s11214-024-01097-8","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/9 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
The Mapping Imaging Spectrometer for Europa (MISE).
The Mapping Imaging Spectrometer for Europa (MISE) is an infrared compositional instrument that will fly on NASA's Europa Clipper mission to the Jupiter system. MISE is designed to meet the Level-1 science requirements related to the mission's composition science objective to "understand the habitability of Europa's ocean through composition and chemistry" and to contribute to the geology science and ice shell and ocean objectives, thereby helping Europa Clipper achieve its mission goal to "explore Europa to investigate its habitability." MISE has a mass of 65 kg and uses an energy per flyby of 75.2 W-h. MISE will detect illumination from 0.8 to 5 μm with 10 nm spectral resolution, a spatial sampling of 25 m per pixel at 100 km altitude, and 300 cross-track pixels, enabling discrimination among the two principal states of water ice on Europa, identification of the main non-ice components of interest: salts, acids, and organics, and detection of trace materials as well as some thermal signatures. Furthermore, the spatial resolution and global coverage that MISE will achieve will be complemented by the higher spectral resolution of some Earth-based assets. MISE, combined with observations collected by the rest of the Europa Clipper payload, will enable significant advances in our understanding of how the large-scale structure of Europa's surface is shaped by geological processes and inform our understanding of the surface at microscale. This paper describes the planned MISE science investigations, instrument design, concept of operations, and data products.
期刊介绍:
ACS Catalysis is an esteemed journal that publishes original research in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. It offers broad coverage across diverse areas such as life sciences, organometallics and synthesis, photochemistry and electrochemistry, drug discovery and synthesis, materials science, environmental protection, polymer discovery and synthesis, and energy and fuels.
The scope of the journal is to showcase innovative work in various aspects of catalysis. This includes new reactions and novel synthetic approaches utilizing known catalysts, the discovery or modification of new catalysts, elucidation of catalytic mechanisms through cutting-edge investigations, practical enhancements of existing processes, as well as conceptual advances in the field. Contributions to ACS Catalysis can encompass both experimental and theoretical research focused on catalytic molecules, macromolecules, and materials that exhibit catalytic turnover.