多组学中子宫内膜癌候选基因的鉴定:孟德尔随机分析。

IF 2.1 4区 医学 Q3 ANDROLOGY Systems Biology in Reproductive Medicine Pub Date : 2024-12-01 Epub Date: 2024-10-14 DOI:10.1080/19396368.2024.2411458
Lan-Hui Qin, Chongze Yang, Rui Song, Pei-Yin Chen, Zijian Jiang, Weihui Xu, Guanzhen Zeng, Jin-Yuan Liao, Liling Long
{"title":"多组学中子宫内膜癌候选基因的鉴定:孟德尔随机分析。","authors":"Lan-Hui Qin, Chongze Yang, Rui Song, Pei-Yin Chen, Zijian Jiang, Weihui Xu, Guanzhen Zeng, Jin-Yuan Liao, Liling Long","doi":"10.1080/19396368.2024.2411458","DOIUrl":null,"url":null,"abstract":"<p><p>Endometrial cancer is the most common malignant tumor of the uterus, but the underlying genetic mechanisms of EC remain unclear. To identify candidate genes and investigate genetic mechanisms for endometrial cancer, we utilized the summary-data-based Mendelian randomization (SMR) method to investigate causal associations between genetic variants, gene expression, DNA methylation, and endometrial cancer. Three main analyses were conducted utilizing cis-expression and methylation quantitative trait loci (eQTLs and mQTLs) as instrumental variables to examine causal relationships with endometrial cancer, and assessing the causal relationship between DNA methylation and gene expression. Data sources included genetic association data from O'Mara et al. eQTL data from the GTEx database, and mQTL data from McRae et al. Analysis involved the HEIDI test to distinguish pleiotropy, SMR analysis with multiple testing correction, and colocalization analysis to assess associations driven by linkage disequilibrium. Functional enrichment analysis was performed by the Metascape tool. Our study showed that three genes, SNX11, LINC00243, and EVI2A, were identified as causally related to endometrial cancer. SNX11 exhibited a positive causal relationship, while LINC00243 and EVI2A showed negative ones. Furthermore, 24 CpG sites were identified as causally related to endometrial cancer, with cg14424631 (CYP19A1) being the most significant. The study revealed common genes implicated in endometrial cancer, gene expression, and methylation sites, with LINC00243 playing a key role. Colocalization analysis confirmed significant causal relationships between LINC00243, SNX11, and endometrial cancer. Enrichment analysis uncovered pathways like interferon gamma signaling enriched in both endometrial cancer GWAS and e/mQTL. These findings shed light on the molecular mechanisms underlying endometrial cancer development. The study identified candidate genes and DNA methylation loci causally associated with endometrial cancer, which are expected to serve as potential targets for treatment.</p>","PeriodicalId":22184,"journal":{"name":"Systems Biology in Reproductive Medicine","volume":"70 1","pages":"299-311"},"PeriodicalIF":2.1000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identification of candidate genes for endometrial cancer in multi-omics: a Mendelian randomization analysis.\",\"authors\":\"Lan-Hui Qin, Chongze Yang, Rui Song, Pei-Yin Chen, Zijian Jiang, Weihui Xu, Guanzhen Zeng, Jin-Yuan Liao, Liling Long\",\"doi\":\"10.1080/19396368.2024.2411458\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Endometrial cancer is the most common malignant tumor of the uterus, but the underlying genetic mechanisms of EC remain unclear. To identify candidate genes and investigate genetic mechanisms for endometrial cancer, we utilized the summary-data-based Mendelian randomization (SMR) method to investigate causal associations between genetic variants, gene expression, DNA methylation, and endometrial cancer. Three main analyses were conducted utilizing cis-expression and methylation quantitative trait loci (eQTLs and mQTLs) as instrumental variables to examine causal relationships with endometrial cancer, and assessing the causal relationship between DNA methylation and gene expression. Data sources included genetic association data from O'Mara et al. eQTL data from the GTEx database, and mQTL data from McRae et al. Analysis involved the HEIDI test to distinguish pleiotropy, SMR analysis with multiple testing correction, and colocalization analysis to assess associations driven by linkage disequilibrium. Functional enrichment analysis was performed by the Metascape tool. Our study showed that three genes, SNX11, LINC00243, and EVI2A, were identified as causally related to endometrial cancer. SNX11 exhibited a positive causal relationship, while LINC00243 and EVI2A showed negative ones. Furthermore, 24 CpG sites were identified as causally related to endometrial cancer, with cg14424631 (CYP19A1) being the most significant. The study revealed common genes implicated in endometrial cancer, gene expression, and methylation sites, with LINC00243 playing a key role. Colocalization analysis confirmed significant causal relationships between LINC00243, SNX11, and endometrial cancer. Enrichment analysis uncovered pathways like interferon gamma signaling enriched in both endometrial cancer GWAS and e/mQTL. These findings shed light on the molecular mechanisms underlying endometrial cancer development. The study identified candidate genes and DNA methylation loci causally associated with endometrial cancer, which are expected to serve as potential targets for treatment.</p>\",\"PeriodicalId\":22184,\"journal\":{\"name\":\"Systems Biology in Reproductive Medicine\",\"volume\":\"70 1\",\"pages\":\"299-311\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Systems Biology in Reproductive Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/19396368.2024.2411458\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/14 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"ANDROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Systems Biology in Reproductive Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/19396368.2024.2411458","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/14 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ANDROLOGY","Score":null,"Total":0}
引用次数: 0

摘要

子宫内膜癌是最常见的子宫恶性肿瘤,但其潜在的遗传机制仍不清楚。为了确定候选基因并研究子宫内膜癌的遗传机制,我们利用基于汇总数据的孟德尔随机化(SMR)方法研究了遗传变异、基因表达、DNA甲基化与子宫内膜癌之间的因果关系。利用顺式表达和甲基化定量性状位点(eQTLs 和 mQTLs)作为工具变量进行了三项主要分析,以研究与子宫内膜癌的因果关系,并评估 DNA 甲基化与基因表达之间的因果关系。数据来源包括 O'Mara 等人的遗传关联数据、GTEx 数据库中的 eQTL 数据和 McRae 等人的 mQTL 数据。分析包括 HEIDI 检验以区分多义性、SMR 分析与多重检验校正,以及共定位分析以评估由连锁不平衡驱动的关联。功能富集分析由 Metascape 工具完成。研究结果表明,SNX11、LINC00243 和 EVI2A 这三个基因与子宫内膜癌存在因果关系。SNX11表现出正向因果关系,而LINC00243和EVI2A则表现出负向因果关系。此外,还发现了 24 个 CpG 位点与子宫内膜癌存在因果关系,其中 cg14424631(CYP19A1)最为重要。该研究揭示了与子宫内膜癌、基因表达和甲基化位点有关的常见基因,其中 LINC00243 起着关键作用。共定位分析证实了 LINC00243、SNX11 和子宫内膜癌之间的重要因果关系。富集分析揭示了子宫内膜癌 GWAS 和 e/mQTL 中富集的干扰素γ 信号转导等通路。这些发现揭示了子宫内膜癌发生的分子机制。该研究确定了与子宫内膜癌有因果关系的候选基因和DNA甲基化位点,这些基因和位点有望成为潜在的治疗靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Identification of candidate genes for endometrial cancer in multi-omics: a Mendelian randomization analysis.

Endometrial cancer is the most common malignant tumor of the uterus, but the underlying genetic mechanisms of EC remain unclear. To identify candidate genes and investigate genetic mechanisms for endometrial cancer, we utilized the summary-data-based Mendelian randomization (SMR) method to investigate causal associations between genetic variants, gene expression, DNA methylation, and endometrial cancer. Three main analyses were conducted utilizing cis-expression and methylation quantitative trait loci (eQTLs and mQTLs) as instrumental variables to examine causal relationships with endometrial cancer, and assessing the causal relationship between DNA methylation and gene expression. Data sources included genetic association data from O'Mara et al. eQTL data from the GTEx database, and mQTL data from McRae et al. Analysis involved the HEIDI test to distinguish pleiotropy, SMR analysis with multiple testing correction, and colocalization analysis to assess associations driven by linkage disequilibrium. Functional enrichment analysis was performed by the Metascape tool. Our study showed that three genes, SNX11, LINC00243, and EVI2A, were identified as causally related to endometrial cancer. SNX11 exhibited a positive causal relationship, while LINC00243 and EVI2A showed negative ones. Furthermore, 24 CpG sites were identified as causally related to endometrial cancer, with cg14424631 (CYP19A1) being the most significant. The study revealed common genes implicated in endometrial cancer, gene expression, and methylation sites, with LINC00243 playing a key role. Colocalization analysis confirmed significant causal relationships between LINC00243, SNX11, and endometrial cancer. Enrichment analysis uncovered pathways like interferon gamma signaling enriched in both endometrial cancer GWAS and e/mQTL. These findings shed light on the molecular mechanisms underlying endometrial cancer development. The study identified candidate genes and DNA methylation loci causally associated with endometrial cancer, which are expected to serve as potential targets for treatment.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.30
自引率
4.20%
发文量
27
审稿时长
>12 weeks
期刊介绍: Systems Biology in Reproductive Medicine, SBiRM, publishes Research Articles, Communications, Applications Notes that include protocols a Clinical Corner that includes case reports, Review Articles and Hypotheses and Letters to the Editor on human and animal reproduction. The journal will highlight the use of systems approaches including genomic, cellular, proteomic, metabolomic, bioinformatic, molecular, and biochemical, to address fundamental questions in reproductive biology, reproductive medicine, and translational research. The journal publishes research involving human and animal gametes, stem cells, developmental biology and toxicology, and clinical care in reproductive medicine. Specific areas of interest to the journal include: male factor infertility and germ cell biology, reproductive technologies (gamete micro-manipulation and cryopreservation, in vitro fertilization/embryo transfer (IVF/ET) and contraception. Research that is directed towards developing new or enhanced technologies for clinical medicine or scientific research in reproduction is of significant interest to the journal.
期刊最新文献
E-SBiRM. Engineered exosome as a biological nanoplatform for drug delivery of Rosmarinic acid to improve implantation in mice with induced endometritis. Hydroxycitric acid and capsaicin combination alleviates obesity-induced testicular apoptosis, oxidative stress and inflammation. Preimplantation genetic testing as a preventive strategy for the transmission of mitochondrial DNA disorders. Effects of first and second division modes on euploidy acquisition in human embryo.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1