肠道 ABC 转运体:对肥胖小鼠乳腺癌模型中甲硝唑环磷酰胺诱导毒性效应的影响

IF 3.3 3区 医学 Q2 PHARMACOLOGY & PHARMACY Toxicology and applied pharmacology Pub Date : 2024-10-18 DOI:10.1016/j.taap.2024.117130
{"title":"肠道 ABC 转运体:对肥胖小鼠乳腺癌模型中甲硝唑环磷酰胺诱导毒性效应的影响","authors":"","doi":"10.1016/j.taap.2024.117130","DOIUrl":null,"url":null,"abstract":"<div><div>Metronomic chemotherapy (MCT) is a cancer therapeutic approach characterized by low dose drug chronic administration and limited or null toxicity. Obesity-induced metabolic alterations worsen cancer prognosis and influence the intestinal biochemical barrier, altering the Multidrug resistance-associated protein 2 (Mrp2) and Multidrug resistance protein-1 (Mdr-1), efflux pumps that transport chemotherapeutic drugs. Obesity and cancer are frequent co-morbidities; thus, our aim was to evaluate the effectiveness and toxicity of MCT with cyclophosphamide (Cy) in obese mice with metabolic alterations bearing a mammary adenocarcinoma. Simultaneously, the expression and activities of intestinal Mrp2 and Mdr-1 were assessed. CBi male mice, were fed with chow diet (C) or diet with 40 % of fat (HFD). After 16 weeks, metabolic alterations were confirmed by biochemical and morphological parameters. At that time-point, HFD group showed decreased expressions of <em>Mrp2</em> mRNA (53 %) as well as <em>Mdr-1a</em> and <em>Mdr-1b</em> (42 % and 59 %, respectively), compared to C (<em>P</em> &lt; 0.05). This result correlated with decreased intestinal Mrp2 and Mdr-1 efflux activities (64 % and 45 %, respectively), compared to C (P &lt; 0.05). Ultimately, mice were challenged with M-406 mammary adenocarcinoma; when the tumor was palpable, mice were distributed into 4 groups. The % inhibition of tumor growth with Cy (30 mg/kg/day) in C + Cy was higher than that of HFD + Cy (<em>P</em> = 0.052). Besides, it was observed a 21 % diminution in body weight and leukopenia in the HFD + Cy group. Conclusion: Obesity-induced metabolic alterations impair intestinal Mrp2 and Mdr-1 functions, bringing about increments in Cy absorption, leading to toxicity; in addition, the antitumor effectiveness of MCT decreased in obese animals.</div></div>","PeriodicalId":23174,"journal":{"name":"Toxicology and applied pharmacology","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Intestinal ABC transporters: Influence on the metronomic cyclophosphamide-induced toxic effect in an obese mouse mammary cancer model\",\"authors\":\"\",\"doi\":\"10.1016/j.taap.2024.117130\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Metronomic chemotherapy (MCT) is a cancer therapeutic approach characterized by low dose drug chronic administration and limited or null toxicity. Obesity-induced metabolic alterations worsen cancer prognosis and influence the intestinal biochemical barrier, altering the Multidrug resistance-associated protein 2 (Mrp2) and Multidrug resistance protein-1 (Mdr-1), efflux pumps that transport chemotherapeutic drugs. Obesity and cancer are frequent co-morbidities; thus, our aim was to evaluate the effectiveness and toxicity of MCT with cyclophosphamide (Cy) in obese mice with metabolic alterations bearing a mammary adenocarcinoma. Simultaneously, the expression and activities of intestinal Mrp2 and Mdr-1 were assessed. CBi male mice, were fed with chow diet (C) or diet with 40 % of fat (HFD). After 16 weeks, metabolic alterations were confirmed by biochemical and morphological parameters. At that time-point, HFD group showed decreased expressions of <em>Mrp2</em> mRNA (53 %) as well as <em>Mdr-1a</em> and <em>Mdr-1b</em> (42 % and 59 %, respectively), compared to C (<em>P</em> &lt; 0.05). This result correlated with decreased intestinal Mrp2 and Mdr-1 efflux activities (64 % and 45 %, respectively), compared to C (P &lt; 0.05). Ultimately, mice were challenged with M-406 mammary adenocarcinoma; when the tumor was palpable, mice were distributed into 4 groups. The % inhibition of tumor growth with Cy (30 mg/kg/day) in C + Cy was higher than that of HFD + Cy (<em>P</em> = 0.052). Besides, it was observed a 21 % diminution in body weight and leukopenia in the HFD + Cy group. Conclusion: Obesity-induced metabolic alterations impair intestinal Mrp2 and Mdr-1 functions, bringing about increments in Cy absorption, leading to toxicity; in addition, the antitumor effectiveness of MCT decreased in obese animals.</div></div>\",\"PeriodicalId\":23174,\"journal\":{\"name\":\"Toxicology and applied pharmacology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Toxicology and applied pharmacology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0041008X24003296\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicology and applied pharmacology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0041008X24003296","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

摘要

周期化疗(MCT)是一种癌症治疗方法,其特点是低剂量药物长期给药,毒性有限或为零。肥胖引起的代谢改变会加重癌症预后,并影响肠道生化屏障,改变多药耐药性相关蛋白 2(Mrp2)和多药耐药性蛋白-1(Mdr-1),它们是运输化疗药物的外排泵。肥胖和癌症是常见的并发症;因此,我们的目的是评估 MCT 与环磷酰胺(Cy)在患有乳腺腺癌、代谢改变的肥胖小鼠中的有效性和毒性。同时,还评估了肠道 Mrp2 和 Mdr-1 的表达和活性。CBi 雄性小鼠以饲料(C)或含 40% 脂肪的饲料(HFD)喂养。16 周后,生化和形态学参数证实了代谢的改变。在该时间点,与 C 组相比,HFD 组的 Mrp2 mRNA(53%)以及 Mdr-1a 和 Mdr-1b 的表达量减少(分别为 42% 和 59%)(P
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Intestinal ABC transporters: Influence on the metronomic cyclophosphamide-induced toxic effect in an obese mouse mammary cancer model
Metronomic chemotherapy (MCT) is a cancer therapeutic approach characterized by low dose drug chronic administration and limited or null toxicity. Obesity-induced metabolic alterations worsen cancer prognosis and influence the intestinal biochemical barrier, altering the Multidrug resistance-associated protein 2 (Mrp2) and Multidrug resistance protein-1 (Mdr-1), efflux pumps that transport chemotherapeutic drugs. Obesity and cancer are frequent co-morbidities; thus, our aim was to evaluate the effectiveness and toxicity of MCT with cyclophosphamide (Cy) in obese mice with metabolic alterations bearing a mammary adenocarcinoma. Simultaneously, the expression and activities of intestinal Mrp2 and Mdr-1 were assessed. CBi male mice, were fed with chow diet (C) or diet with 40 % of fat (HFD). After 16 weeks, metabolic alterations were confirmed by biochemical and morphological parameters. At that time-point, HFD group showed decreased expressions of Mrp2 mRNA (53 %) as well as Mdr-1a and Mdr-1b (42 % and 59 %, respectively), compared to C (P < 0.05). This result correlated with decreased intestinal Mrp2 and Mdr-1 efflux activities (64 % and 45 %, respectively), compared to C (P < 0.05). Ultimately, mice were challenged with M-406 mammary adenocarcinoma; when the tumor was palpable, mice were distributed into 4 groups. The % inhibition of tumor growth with Cy (30 mg/kg/day) in C + Cy was higher than that of HFD + Cy (P = 0.052). Besides, it was observed a 21 % diminution in body weight and leukopenia in the HFD + Cy group. Conclusion: Obesity-induced metabolic alterations impair intestinal Mrp2 and Mdr-1 functions, bringing about increments in Cy absorption, leading to toxicity; in addition, the antitumor effectiveness of MCT decreased in obese animals.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.80
自引率
2.60%
发文量
309
审稿时长
32 days
期刊介绍: Toxicology and Applied Pharmacology publishes original scientific research of relevance to animals or humans pertaining to the action of chemicals, drugs, or chemically-defined natural products. Regular articles address mechanistic approaches to physiological, pharmacologic, biochemical, cellular, or molecular understanding of toxicologic/pathologic lesions and to methods used to describe these responses. Safety Science articles address outstanding state-of-the-art preclinical and human translational characterization of drug and chemical safety employing cutting-edge science. Highly significant Regulatory Safety Science articles will also be considered in this category. Papers concerned with alternatives to the use of experimental animals are encouraged. Short articles report on high impact studies of broad interest to readers of TAAP that would benefit from rapid publication. These articles should contain no more than a combined total of four figures and tables. Authors should include in their cover letter the justification for consideration of their manuscript as a short article.
期刊最新文献
Lonicerin protects pancreatic acinar cells from caerulein-induced apoptosis, inflammation, and ferroptosis by activating the SIRT1/GPX4 signaling pathway Hepatotoxicity of N-nitrosodin-propylamine in larval zebrafish by upregulating the Wnt pathway On the relationship between hERG inhibition and the magnitude of QTc prolongation: An in vitro to clinical translational analysis Ferritinophagy is involved in hexavalent chromium-induced ferroptosis in Sertoli cells Acute ammonia stress affects the immune response, oxidative stress, ammonia transport and detoxication in the hepatopancreas of freshwater mollusk Solenaia oleivora.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1