Meng Wang, Zeyu Xu, Ziyang Wang, Xiaowan Xu, Yongning Sun
{"title":"基于网络药理学和实验验证的小檗碱抗胃癌机制分析","authors":"Meng Wang, Zeyu Xu, Ziyang Wang, Xiaowan Xu, Yongning Sun","doi":"10.21037/tcr-24-668","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Although the therapeutic effects of berberine have received some attention in recent years, its potential mechanisms underlying its action against stomach carcinoma (SC) remain unclear. In this study, we aimed to elucidate the mechanisms underlying the effects of berberine against SC using a network pharmacology and experimental verification approach.</p><p><strong>Methods: </strong>Several publicly available databases were used to collect the targets of berberine and SC. Protein-protein interaction (PPI) network, enrichment analyses and molecular docking were performed based on the potential targets of berberine against SC. The potential clinical significance and prognostic value of the targets were predicted by using nomogram and receiver operating characteristic (ROC) analyses. Then the viability and apoptosis of SC cells treated with berberine were determined. Moreover, reactive oxygen species (ROS), mitochondrial membrane potential (MMP) and adenosine triphosphate (ATP) measurements and western blot assay were carried out to validate the predicted mechanisms.</p><p><strong>Results: </strong>Seventy-six potential targets of berberine against SC were identified. The construction of PPI network enabled the identification of hub targets, such as AKT1, TP53, IL6, JUN and MAPK1. Enrichment analyses showed that berberine was involved in apoptosis, mitophagy, ROS metabolic process, AMPK and MAPK signaling pathway. The expression levels of hub targets also contributed to the clinical prognosis of patients with SC. Molecular docking revealed the possible patterns of direct interaction between berberine and target proteins, including AMPK, TP53 and MAPK1. Experimental results showed that berberine reduced SC cell viability, promoted apoptosis and ROS generation, and contributed to reductions in MMP and ATP levels. Western blot assay demonstrated that berberine increased AMPK and TP53 expression, while decreased phosphorylated-MAPK3/1 expression.</p><p><strong>Conclusions: </strong>We elucidated the potential action mechanisms of berberine against SC using a network pharmacology approach. Some predicted mechanisms underlying the anti-SC effects were verified based on experimental approaches. Our findings provide a meaningful foundation for berberine as a cellular apoptosis-inducing and energy metabolism-regulating agent against SC. However, <i>in vivo</i> experiments and clinical studies need to be further carried out. Moreover, it is necessary to study the potential negative effects of berberine thoroughly.</p>","PeriodicalId":23216,"journal":{"name":"Translational cancer research","volume":"13 9","pages":"4593-4607"},"PeriodicalIF":1.5000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11483340/pdf/","citationCount":"0","resultStr":"{\"title\":\"Analysis of the mechanism of berberine against stomach carcinoma based on network pharmacology and experimental validation.\",\"authors\":\"Meng Wang, Zeyu Xu, Ziyang Wang, Xiaowan Xu, Yongning Sun\",\"doi\":\"10.21037/tcr-24-668\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Although the therapeutic effects of berberine have received some attention in recent years, its potential mechanisms underlying its action against stomach carcinoma (SC) remain unclear. In this study, we aimed to elucidate the mechanisms underlying the effects of berberine against SC using a network pharmacology and experimental verification approach.</p><p><strong>Methods: </strong>Several publicly available databases were used to collect the targets of berberine and SC. Protein-protein interaction (PPI) network, enrichment analyses and molecular docking were performed based on the potential targets of berberine against SC. The potential clinical significance and prognostic value of the targets were predicted by using nomogram and receiver operating characteristic (ROC) analyses. Then the viability and apoptosis of SC cells treated with berberine were determined. Moreover, reactive oxygen species (ROS), mitochondrial membrane potential (MMP) and adenosine triphosphate (ATP) measurements and western blot assay were carried out to validate the predicted mechanisms.</p><p><strong>Results: </strong>Seventy-six potential targets of berberine against SC were identified. The construction of PPI network enabled the identification of hub targets, such as AKT1, TP53, IL6, JUN and MAPK1. Enrichment analyses showed that berberine was involved in apoptosis, mitophagy, ROS metabolic process, AMPK and MAPK signaling pathway. The expression levels of hub targets also contributed to the clinical prognosis of patients with SC. Molecular docking revealed the possible patterns of direct interaction between berberine and target proteins, including AMPK, TP53 and MAPK1. Experimental results showed that berberine reduced SC cell viability, promoted apoptosis and ROS generation, and contributed to reductions in MMP and ATP levels. Western blot assay demonstrated that berberine increased AMPK and TP53 expression, while decreased phosphorylated-MAPK3/1 expression.</p><p><strong>Conclusions: </strong>We elucidated the potential action mechanisms of berberine against SC using a network pharmacology approach. Some predicted mechanisms underlying the anti-SC effects were verified based on experimental approaches. Our findings provide a meaningful foundation for berberine as a cellular apoptosis-inducing and energy metabolism-regulating agent against SC. However, <i>in vivo</i> experiments and clinical studies need to be further carried out. Moreover, it is necessary to study the potential negative effects of berberine thoroughly.</p>\",\"PeriodicalId\":23216,\"journal\":{\"name\":\"Translational cancer research\",\"volume\":\"13 9\",\"pages\":\"4593-4607\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11483340/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Translational cancer research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.21037/tcr-24-668\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/27 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Translational cancer research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.21037/tcr-24-668","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/27 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"ONCOLOGY","Score":null,"Total":0}
Analysis of the mechanism of berberine against stomach carcinoma based on network pharmacology and experimental validation.
Background: Although the therapeutic effects of berberine have received some attention in recent years, its potential mechanisms underlying its action against stomach carcinoma (SC) remain unclear. In this study, we aimed to elucidate the mechanisms underlying the effects of berberine against SC using a network pharmacology and experimental verification approach.
Methods: Several publicly available databases were used to collect the targets of berberine and SC. Protein-protein interaction (PPI) network, enrichment analyses and molecular docking were performed based on the potential targets of berberine against SC. The potential clinical significance and prognostic value of the targets were predicted by using nomogram and receiver operating characteristic (ROC) analyses. Then the viability and apoptosis of SC cells treated with berberine were determined. Moreover, reactive oxygen species (ROS), mitochondrial membrane potential (MMP) and adenosine triphosphate (ATP) measurements and western blot assay were carried out to validate the predicted mechanisms.
Results: Seventy-six potential targets of berberine against SC were identified. The construction of PPI network enabled the identification of hub targets, such as AKT1, TP53, IL6, JUN and MAPK1. Enrichment analyses showed that berberine was involved in apoptosis, mitophagy, ROS metabolic process, AMPK and MAPK signaling pathway. The expression levels of hub targets also contributed to the clinical prognosis of patients with SC. Molecular docking revealed the possible patterns of direct interaction between berberine and target proteins, including AMPK, TP53 and MAPK1. Experimental results showed that berberine reduced SC cell viability, promoted apoptosis and ROS generation, and contributed to reductions in MMP and ATP levels. Western blot assay demonstrated that berberine increased AMPK and TP53 expression, while decreased phosphorylated-MAPK3/1 expression.
Conclusions: We elucidated the potential action mechanisms of berberine against SC using a network pharmacology approach. Some predicted mechanisms underlying the anti-SC effects were verified based on experimental approaches. Our findings provide a meaningful foundation for berberine as a cellular apoptosis-inducing and energy metabolism-regulating agent against SC. However, in vivo experiments and clinical studies need to be further carried out. Moreover, it is necessary to study the potential negative effects of berberine thoroughly.
期刊介绍:
Translational Cancer Research (Transl Cancer Res TCR; Print ISSN: 2218-676X; Online ISSN 2219-6803; http://tcr.amegroups.com/) is an Open Access, peer-reviewed journal, indexed in Science Citation Index Expanded (SCIE). TCR publishes laboratory studies of novel therapeutic interventions as well as clinical trials which evaluate new treatment paradigms for cancer; results of novel research investigations which bridge the laboratory and clinical settings including risk assessment, cellular and molecular characterization, prevention, detection, diagnosis and treatment of human cancers with the overall goal of improving the clinical care of cancer patients. The focus of TCR is original, peer-reviewed, science-based research that successfully advances clinical medicine toward the goal of improving patients'' quality of life. The editors and an international advisory group of scientists and clinician-scientists as well as other experts will hold TCR articles to the high-quality standards. We accept Original Articles as well as Review Articles, Editorials and Brief Articles.