Shanzhou Xie, Yuting Su, Jinyan Zhang, Fuqiang Yin, Xia Liu
{"title":"miRNA-450b-5p靶向ACTB的上调通过PI3K/Akt信号通路影响卵巢癌的耐药性和预后。","authors":"Shanzhou Xie, Yuting Su, Jinyan Zhang, Fuqiang Yin, Xia Liu","doi":"10.21037/tcr-24-292","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Ovarian cancer (OC) is the most malignant gynecologic cancer, and chemoresistance is a major cause of treatment failure in patients with OC. The understanding of microRNA (miRNA) in cancer is limited, and the role of miRNA (miR)-450b-5p in cancer drug resistance is unknown. In this study, we aim to evaluate the role of miR-450b-5p in drug-resistant OC and its underlying mechanisms.</p><p><strong>Methods: </strong>MiR-450b-5p expression was assessed in drug-sensitive and resistant OC cells via quantitative real-time polymerase chain reaction. Cell viability was evaluated using the Cell Counting Kit-8 assay. Progression-free survival (PFS) and overall survival (OS) curves were generated using the Kaplan-Meier method and the log-rank test. Target genes of miR-450b-5p were identified from the Cancer MIRNome database. Co-expressed genes were obtained from The Cancer Genome Atlas and Cancer Genome cBioportal for pathway enrichment and functional clustering analysis.</p><p><strong>Results: </strong>The miRNA-450b-5p expression was significantly increased in A2780 and SKOV3 OC-resistant cells and significantly increased by 17-fold in the A2780-CBP-Lv-miR-450b-5p cells compared to A2780-CBP and A2780-CBP-Lv-NC cells. The up-regulated expression of miR-450b-5p increased the cell viability and half maximal inhibitory concentration (IC<sub>50</sub>) of A2780 platinum-resistant cells and was associated with poor OS. We obtained 33 potential target genes of miR-450b-5p and beta-actin (ACTB) might be a potential target of miR-450b-5p. Low expression of ACTB predicted poor OS and PFS. We obtained 362 common genes co-expressed with ACTB, which involved 4 critical pathways. PI3K acted as an upstream pathway of the other three pathways, which ultimately responded to drug resistance regulation in OC. The genes enriched in four pathways were cross-analyzed and 13 overlapping genes were obtained. These 13 genes were also significantly and positively co-expressed with ACTB at both protein and mRNA levels.</p><p><strong>Conclusions: </strong>High expression of miRNA-450b-5p might affect drug resistance and prognosis in OC by targeting 13 co-expressed genes of ACTB directly through the PI3K/Akt signaling pathway. Thus, miR-450b-5p might provide a new therapeutic target for drug resistance in OC.</p>","PeriodicalId":23216,"journal":{"name":"Translational cancer research","volume":"13 9","pages":"4800-4812"},"PeriodicalIF":1.5000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11483453/pdf/","citationCount":"0","resultStr":"{\"title\":\"Upregulation of miRNA-450b-5p targets ACTB to affect drug resistance and prognosis of ovarian cancer via the PI3K/Akt signaling pathway.\",\"authors\":\"Shanzhou Xie, Yuting Su, Jinyan Zhang, Fuqiang Yin, Xia Liu\",\"doi\":\"10.21037/tcr-24-292\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Ovarian cancer (OC) is the most malignant gynecologic cancer, and chemoresistance is a major cause of treatment failure in patients with OC. The understanding of microRNA (miRNA) in cancer is limited, and the role of miRNA (miR)-450b-5p in cancer drug resistance is unknown. In this study, we aim to evaluate the role of miR-450b-5p in drug-resistant OC and its underlying mechanisms.</p><p><strong>Methods: </strong>MiR-450b-5p expression was assessed in drug-sensitive and resistant OC cells via quantitative real-time polymerase chain reaction. Cell viability was evaluated using the Cell Counting Kit-8 assay. Progression-free survival (PFS) and overall survival (OS) curves were generated using the Kaplan-Meier method and the log-rank test. Target genes of miR-450b-5p were identified from the Cancer MIRNome database. Co-expressed genes were obtained from The Cancer Genome Atlas and Cancer Genome cBioportal for pathway enrichment and functional clustering analysis.</p><p><strong>Results: </strong>The miRNA-450b-5p expression was significantly increased in A2780 and SKOV3 OC-resistant cells and significantly increased by 17-fold in the A2780-CBP-Lv-miR-450b-5p cells compared to A2780-CBP and A2780-CBP-Lv-NC cells. The up-regulated expression of miR-450b-5p increased the cell viability and half maximal inhibitory concentration (IC<sub>50</sub>) of A2780 platinum-resistant cells and was associated with poor OS. We obtained 33 potential target genes of miR-450b-5p and beta-actin (ACTB) might be a potential target of miR-450b-5p. Low expression of ACTB predicted poor OS and PFS. We obtained 362 common genes co-expressed with ACTB, which involved 4 critical pathways. PI3K acted as an upstream pathway of the other three pathways, which ultimately responded to drug resistance regulation in OC. The genes enriched in four pathways were cross-analyzed and 13 overlapping genes were obtained. These 13 genes were also significantly and positively co-expressed with ACTB at both protein and mRNA levels.</p><p><strong>Conclusions: </strong>High expression of miRNA-450b-5p might affect drug resistance and prognosis in OC by targeting 13 co-expressed genes of ACTB directly through the PI3K/Akt signaling pathway. Thus, miR-450b-5p might provide a new therapeutic target for drug resistance in OC.</p>\",\"PeriodicalId\":23216,\"journal\":{\"name\":\"Translational cancer research\",\"volume\":\"13 9\",\"pages\":\"4800-4812\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11483453/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Translational cancer research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.21037/tcr-24-292\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/27 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Translational cancer research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.21037/tcr-24-292","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/27 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"ONCOLOGY","Score":null,"Total":0}
Upregulation of miRNA-450b-5p targets ACTB to affect drug resistance and prognosis of ovarian cancer via the PI3K/Akt signaling pathway.
Background: Ovarian cancer (OC) is the most malignant gynecologic cancer, and chemoresistance is a major cause of treatment failure in patients with OC. The understanding of microRNA (miRNA) in cancer is limited, and the role of miRNA (miR)-450b-5p in cancer drug resistance is unknown. In this study, we aim to evaluate the role of miR-450b-5p in drug-resistant OC and its underlying mechanisms.
Methods: MiR-450b-5p expression was assessed in drug-sensitive and resistant OC cells via quantitative real-time polymerase chain reaction. Cell viability was evaluated using the Cell Counting Kit-8 assay. Progression-free survival (PFS) and overall survival (OS) curves were generated using the Kaplan-Meier method and the log-rank test. Target genes of miR-450b-5p were identified from the Cancer MIRNome database. Co-expressed genes were obtained from The Cancer Genome Atlas and Cancer Genome cBioportal for pathway enrichment and functional clustering analysis.
Results: The miRNA-450b-5p expression was significantly increased in A2780 and SKOV3 OC-resistant cells and significantly increased by 17-fold in the A2780-CBP-Lv-miR-450b-5p cells compared to A2780-CBP and A2780-CBP-Lv-NC cells. The up-regulated expression of miR-450b-5p increased the cell viability and half maximal inhibitory concentration (IC50) of A2780 platinum-resistant cells and was associated with poor OS. We obtained 33 potential target genes of miR-450b-5p and beta-actin (ACTB) might be a potential target of miR-450b-5p. Low expression of ACTB predicted poor OS and PFS. We obtained 362 common genes co-expressed with ACTB, which involved 4 critical pathways. PI3K acted as an upstream pathway of the other three pathways, which ultimately responded to drug resistance regulation in OC. The genes enriched in four pathways were cross-analyzed and 13 overlapping genes were obtained. These 13 genes were also significantly and positively co-expressed with ACTB at both protein and mRNA levels.
Conclusions: High expression of miRNA-450b-5p might affect drug resistance and prognosis in OC by targeting 13 co-expressed genes of ACTB directly through the PI3K/Akt signaling pathway. Thus, miR-450b-5p might provide a new therapeutic target for drug resistance in OC.
期刊介绍:
Translational Cancer Research (Transl Cancer Res TCR; Print ISSN: 2218-676X; Online ISSN 2219-6803; http://tcr.amegroups.com/) is an Open Access, peer-reviewed journal, indexed in Science Citation Index Expanded (SCIE). TCR publishes laboratory studies of novel therapeutic interventions as well as clinical trials which evaluate new treatment paradigms for cancer; results of novel research investigations which bridge the laboratory and clinical settings including risk assessment, cellular and molecular characterization, prevention, detection, diagnosis and treatment of human cancers with the overall goal of improving the clinical care of cancer patients. The focus of TCR is original, peer-reviewed, science-based research that successfully advances clinical medicine toward the goal of improving patients'' quality of life. The editors and an international advisory group of scientists and clinician-scientists as well as other experts will hold TCR articles to the high-quality standards. We accept Original Articles as well as Review Articles, Editorials and Brief Articles.