[超细炭黑诱导人支气管上皮细胞自噬和凋亡的分子机制及N-乙酰半胱氨酸的干预作用研究]。

T Meng, H J Guo, Y Yao, Z H Mi, Y Tian, J Z Yu
{"title":"[超细炭黑诱导人支气管上皮细胞自噬和凋亡的分子机制及N-乙酰半胱氨酸的干预作用研究]。","authors":"T Meng, H J Guo, Y Yao, Z H Mi, Y Tian, J Z Yu","doi":"10.3760/cma.j.cn121094-20231010-00080","DOIUrl":null,"url":null,"abstract":"<p><p><b>Objective:</b> To investigate the molecular mechanism of autophagy and apoptosis induced by ultrafine carbon black in human bronchial epithelial cells (BEAS-2B cells), and to study the intervention effect and mechanism of N-acetylcysteine (NAC) on ultrafine carbon black-induced oxidative damage in BEAS-2B cells. <b>Methods:</b> In March 2023, BEAS-2B cells were used as research object, an in vitro airway model exposed to ultrafine carbon black was constructed. A control group and three carbon black exposure groups (50, 100, 200 μg/ml) were set up, and the cells were treated with corresponding concentrations of ultrafine carbon black for 24 hours. In addition, the experiment was divided into control group, NAC+ control group, 100 μg/ml carbon black exposure group and NAC+ exposure group. The corresponding groups were treated with 2 mmol/L NAC for 1 h and 100 μg/ml ultrafine carbon black for 24 h, respectively. Cell viability was measured by CCK-8 assay. Intracellular reactive oxygen species (ROS) level was detected by chemical fluorescence method. The activities of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and catalase (CAT), as well as the content of malondialdehyde (MDA) were detected by colorimetry. The mRNA and protein expressions of autophagy-related genes[Atg5, Atg7, Beclin1, microtubule-associated protein light chain 3B (LC3B), p62 and lysosome-associated membrane protein 2 (LAMP2) ] and apoptosis-related genes [B-cell lymphoma 2 (Bcl-2), Bcl-2-associated X protein (Bax), Caspase3, Caspase9 and poly (ADP-ribose) polymerase 1 (PARP1) ] were determined by fluorescence quantitative PCR and Western blot. Cell apoptosis was determined by flow cytometry. <b>Results:</b> Compared with the control group, the relative survival rates of BEAS-2B cells in 50, 100, 200 μg/ml carbon black exposure groups were significantly decreased, the levels of ROS and MDA were significantly increased, and the activities of SOD, GSH-Px and CAT were significantly decreased (<i>P</i><0.05). The relative survival rate, ROS and MDA levels, SOD, GSH-Px and CAT activities were significantly correlated with the exposure dose of ultrafine carbon black (<i>r</i>(s)=-0.755, 0.826, 0.934, -0.810, -0.880, -0.840, <i>P</i><0.05). Compared with the control group, the relative expression levels of Atg5, Atg7, Beclin1, LC3B, p62, LAMP2, Bax, Caspase3, Caspase9, PARP1 mRNA and Atg5, Atg7, Beclin1, LC3BⅡ, p62, LAMP2, Bax, cleaved Caspase3 (C-Caspase3), cleaved Caspase9 (C-Caspase9), cleaved PARP1 (C-PARP1) protein and the ratio of LC3BⅡ/LC3BⅠ in 50, 100 and 200 μg/ml carbon black exposure groups were significantly increased, while the relative expression levels of Bcl-2 mRNA and protein were significantly decreased (<i>P</i><0.05). The changes of the above indexes were significantly correlated with the exposure dose of carbon black (<i>r</i>(s)=0.892, 0.879, 0.944, 0.892, 0.828, 0.880, 0.814, 0.794, 0.931, 0.918, 0.813, 0.866, 0.774, 0.695, 0.918, 0.761, 0.794, 0.944, 0.833, 0.866, 0.905, -0.886, -0.748, <i>P</i><0.05). Compared with 100 μg/ml carbon black exposure group, the relative survival rate, the activities of SOD, GSH-Px and CAT in NAC+exposure group were significantly increased, while the levels of ROS and MDA were significantly decreased, and the relative expression levels of LC3B, p62 and Caspase3 mRNA and protein as well as the ratio of LC3BⅡ/LC3BⅠ were significantly decreased, and the differences were statistically significant (<i>P</i><0.05). Compared with the control group, the apoptosis rates of BEAS-2B cells in 50, 100, 200 μg/ml carbon black exposure groups were significantly increased (<i>P</i><0.05), and there was a significant positive correlation between ultrafine carbon black exposure dose and cell apoptosis rate (<i>r</i>(s)=0.944, <i>P</i><0.05). While compared with 100 μg/ml carbon black exposure group, the apoptosis rate of NAC+exposure group was significantly decreased, and the difference was statistically significant (<i>P</i><0.05) . <b>Conclusion:</b> Cell autophagy and apoptosis may be important pathophysiological mechanisms of ultrafine carbon black-induced oxidative damage in BEAS-2B cells. NAC can alleviate the occurrence of BEAS-2B cell damage caused by ultrafine carbon black by regulating oxidative stress and the cascading autophagy and apoptosis pathways.</p>","PeriodicalId":23958,"journal":{"name":"中华劳动卫生职业病杂志","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"[Study on the molecular mechanism of autophagy and apoptosis induced by ultrafine carbon black in human bronchial epithelial cells and the intervention effect of N-acetylcysteine].\",\"authors\":\"T Meng, H J Guo, Y Yao, Z H Mi, Y Tian, J Z Yu\",\"doi\":\"10.3760/cma.j.cn121094-20231010-00080\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b>Objective:</b> To investigate the molecular mechanism of autophagy and apoptosis induced by ultrafine carbon black in human bronchial epithelial cells (BEAS-2B cells), and to study the intervention effect and mechanism of N-acetylcysteine (NAC) on ultrafine carbon black-induced oxidative damage in BEAS-2B cells. <b>Methods:</b> In March 2023, BEAS-2B cells were used as research object, an in vitro airway model exposed to ultrafine carbon black was constructed. A control group and three carbon black exposure groups (50, 100, 200 μg/ml) were set up, and the cells were treated with corresponding concentrations of ultrafine carbon black for 24 hours. In addition, the experiment was divided into control group, NAC+ control group, 100 μg/ml carbon black exposure group and NAC+ exposure group. The corresponding groups were treated with 2 mmol/L NAC for 1 h and 100 μg/ml ultrafine carbon black for 24 h, respectively. Cell viability was measured by CCK-8 assay. Intracellular reactive oxygen species (ROS) level was detected by chemical fluorescence method. The activities of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and catalase (CAT), as well as the content of malondialdehyde (MDA) were detected by colorimetry. The mRNA and protein expressions of autophagy-related genes[Atg5, Atg7, Beclin1, microtubule-associated protein light chain 3B (LC3B), p62 and lysosome-associated membrane protein 2 (LAMP2) ] and apoptosis-related genes [B-cell lymphoma 2 (Bcl-2), Bcl-2-associated X protein (Bax), Caspase3, Caspase9 and poly (ADP-ribose) polymerase 1 (PARP1) ] were determined by fluorescence quantitative PCR and Western blot. Cell apoptosis was determined by flow cytometry. <b>Results:</b> Compared with the control group, the relative survival rates of BEAS-2B cells in 50, 100, 200 μg/ml carbon black exposure groups were significantly decreased, the levels of ROS and MDA were significantly increased, and the activities of SOD, GSH-Px and CAT were significantly decreased (<i>P</i><0.05). The relative survival rate, ROS and MDA levels, SOD, GSH-Px and CAT activities were significantly correlated with the exposure dose of ultrafine carbon black (<i>r</i>(s)=-0.755, 0.826, 0.934, -0.810, -0.880, -0.840, <i>P</i><0.05). Compared with the control group, the relative expression levels of Atg5, Atg7, Beclin1, LC3B, p62, LAMP2, Bax, Caspase3, Caspase9, PARP1 mRNA and Atg5, Atg7, Beclin1, LC3BⅡ, p62, LAMP2, Bax, cleaved Caspase3 (C-Caspase3), cleaved Caspase9 (C-Caspase9), cleaved PARP1 (C-PARP1) protein and the ratio of LC3BⅡ/LC3BⅠ in 50, 100 and 200 μg/ml carbon black exposure groups were significantly increased, while the relative expression levels of Bcl-2 mRNA and protein were significantly decreased (<i>P</i><0.05). The changes of the above indexes were significantly correlated with the exposure dose of carbon black (<i>r</i>(s)=0.892, 0.879, 0.944, 0.892, 0.828, 0.880, 0.814, 0.794, 0.931, 0.918, 0.813, 0.866, 0.774, 0.695, 0.918, 0.761, 0.794, 0.944, 0.833, 0.866, 0.905, -0.886, -0.748, <i>P</i><0.05). Compared with 100 μg/ml carbon black exposure group, the relative survival rate, the activities of SOD, GSH-Px and CAT in NAC+exposure group were significantly increased, while the levels of ROS and MDA were significantly decreased, and the relative expression levels of LC3B, p62 and Caspase3 mRNA and protein as well as the ratio of LC3BⅡ/LC3BⅠ were significantly decreased, and the differences were statistically significant (<i>P</i><0.05). Compared with the control group, the apoptosis rates of BEAS-2B cells in 50, 100, 200 μg/ml carbon black exposure groups were significantly increased (<i>P</i><0.05), and there was a significant positive correlation between ultrafine carbon black exposure dose and cell apoptosis rate (<i>r</i>(s)=0.944, <i>P</i><0.05). While compared with 100 μg/ml carbon black exposure group, the apoptosis rate of NAC+exposure group was significantly decreased, and the difference was statistically significant (<i>P</i><0.05) . <b>Conclusion:</b> Cell autophagy and apoptosis may be important pathophysiological mechanisms of ultrafine carbon black-induced oxidative damage in BEAS-2B cells. NAC can alleviate the occurrence of BEAS-2B cell damage caused by ultrafine carbon black by regulating oxidative stress and the cascading autophagy and apoptosis pathways.</p>\",\"PeriodicalId\":23958,\"journal\":{\"name\":\"中华劳动卫生职业病杂志\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"中华劳动卫生职业病杂志\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3760/cma.j.cn121094-20231010-00080\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"中华劳动卫生职业病杂志","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3760/cma.j.cn121094-20231010-00080","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
[Study on the molecular mechanism of autophagy and apoptosis induced by ultrafine carbon black in human bronchial epithelial cells and the intervention effect of N-acetylcysteine].

Objective: To investigate the molecular mechanism of autophagy and apoptosis induced by ultrafine carbon black in human bronchial epithelial cells (BEAS-2B cells), and to study the intervention effect and mechanism of N-acetylcysteine (NAC) on ultrafine carbon black-induced oxidative damage in BEAS-2B cells. Methods: In March 2023, BEAS-2B cells were used as research object, an in vitro airway model exposed to ultrafine carbon black was constructed. A control group and three carbon black exposure groups (50, 100, 200 μg/ml) were set up, and the cells were treated with corresponding concentrations of ultrafine carbon black for 24 hours. In addition, the experiment was divided into control group, NAC+ control group, 100 μg/ml carbon black exposure group and NAC+ exposure group. The corresponding groups were treated with 2 mmol/L NAC for 1 h and 100 μg/ml ultrafine carbon black for 24 h, respectively. Cell viability was measured by CCK-8 assay. Intracellular reactive oxygen species (ROS) level was detected by chemical fluorescence method. The activities of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and catalase (CAT), as well as the content of malondialdehyde (MDA) were detected by colorimetry. The mRNA and protein expressions of autophagy-related genes[Atg5, Atg7, Beclin1, microtubule-associated protein light chain 3B (LC3B), p62 and lysosome-associated membrane protein 2 (LAMP2) ] and apoptosis-related genes [B-cell lymphoma 2 (Bcl-2), Bcl-2-associated X protein (Bax), Caspase3, Caspase9 and poly (ADP-ribose) polymerase 1 (PARP1) ] were determined by fluorescence quantitative PCR and Western blot. Cell apoptosis was determined by flow cytometry. Results: Compared with the control group, the relative survival rates of BEAS-2B cells in 50, 100, 200 μg/ml carbon black exposure groups were significantly decreased, the levels of ROS and MDA were significantly increased, and the activities of SOD, GSH-Px and CAT were significantly decreased (P<0.05). The relative survival rate, ROS and MDA levels, SOD, GSH-Px and CAT activities were significantly correlated with the exposure dose of ultrafine carbon black (r(s)=-0.755, 0.826, 0.934, -0.810, -0.880, -0.840, P<0.05). Compared with the control group, the relative expression levels of Atg5, Atg7, Beclin1, LC3B, p62, LAMP2, Bax, Caspase3, Caspase9, PARP1 mRNA and Atg5, Atg7, Beclin1, LC3BⅡ, p62, LAMP2, Bax, cleaved Caspase3 (C-Caspase3), cleaved Caspase9 (C-Caspase9), cleaved PARP1 (C-PARP1) protein and the ratio of LC3BⅡ/LC3BⅠ in 50, 100 and 200 μg/ml carbon black exposure groups were significantly increased, while the relative expression levels of Bcl-2 mRNA and protein were significantly decreased (P<0.05). The changes of the above indexes were significantly correlated with the exposure dose of carbon black (r(s)=0.892, 0.879, 0.944, 0.892, 0.828, 0.880, 0.814, 0.794, 0.931, 0.918, 0.813, 0.866, 0.774, 0.695, 0.918, 0.761, 0.794, 0.944, 0.833, 0.866, 0.905, -0.886, -0.748, P<0.05). Compared with 100 μg/ml carbon black exposure group, the relative survival rate, the activities of SOD, GSH-Px and CAT in NAC+exposure group were significantly increased, while the levels of ROS and MDA were significantly decreased, and the relative expression levels of LC3B, p62 and Caspase3 mRNA and protein as well as the ratio of LC3BⅡ/LC3BⅠ were significantly decreased, and the differences were statistically significant (P<0.05). Compared with the control group, the apoptosis rates of BEAS-2B cells in 50, 100, 200 μg/ml carbon black exposure groups were significantly increased (P<0.05), and there was a significant positive correlation between ultrafine carbon black exposure dose and cell apoptosis rate (r(s)=0.944, P<0.05). While compared with 100 μg/ml carbon black exposure group, the apoptosis rate of NAC+exposure group was significantly decreased, and the difference was statistically significant (P<0.05) . Conclusion: Cell autophagy and apoptosis may be important pathophysiological mechanisms of ultrafine carbon black-induced oxidative damage in BEAS-2B cells. NAC can alleviate the occurrence of BEAS-2B cell damage caused by ultrafine carbon black by regulating oxidative stress and the cascading autophagy and apoptosis pathways.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
中华劳动卫生职业病杂志
中华劳动卫生职业病杂志 Medicine-Medicine (all)
CiteScore
1.00
自引率
0.00%
发文量
9764
期刊介绍:
期刊最新文献
[Comparative study on the immune surveillance injury of blood cerebrospinal fluid barrier induced by exposure to lead acetate and nano-lead sulfide]. [Delphi method investigation and research on the revision of Diagnosis of Occupational Arsenic Poisoning (GBZ 83-2013)]. [Determination of 22 elements in whole blood by inductively coupled plasma mass spectrometry]. [Expression changes of miRNAs and EMT-related genes in human mesothelial cells induced by long-term exposure to asbestos]. [Influencing factors of occupational health of clinical nuclear medical staff].
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1