Paul Victor Santiago Raj, Natalie E Scholpa, Kevin A Hurtado, Jaroslav Janda, John Hortareas, Rick G Schnellmann
{"title":"5-羟色胺 1F 受体激动剂 Lasmiditan 对急性肾损伤小鼠模型中的成功修复基因和失败修复基因进行不同程度的调控。","authors":"Paul Victor Santiago Raj, Natalie E Scholpa, Kevin A Hurtado, Jaroslav Janda, John Hortareas, Rick G Schnellmann","doi":"10.1021/acsptsci.4c00246","DOIUrl":null,"url":null,"abstract":"<p><p>Increasing evidence substantiates the role of mitochondrial dysfunction, inflammation, fibrosis, and cell senescence in the onset and progression of acute kidney injury (AKI) to chronic kidney disease . The underlying governing cellular and transcriptional events, however, are not fully understood. Recently, the key factors that regulate successful and failed repair states in the proximal tubule have been identified at a single-cell resolution following bilateral ischemia-reperfusion (I/R) in a mouse model of AKI. Previously, our group showed that treatment with the FDA-approved selective 5-hydroxytryptamine receptor 1F agonist lasmiditan following AKI induces mitochondrial biogenesis , restores renal mitochondrial function, and increases renal and vascular recovery <i>in vivo</i>. Here, we assessed the effect of lasmiditan on transcriptional and translational changes that are responsible for successful repair, injury, and failed repair states in the renal cortex following I/R-induced AKI. Increased levels of successful repair genes such as acyl-coA synthase medium-chain family member 2a, low-density lipoprotein receptor-related protein 2, solute carrier family 5 member 12, and hepatocyte nuclear factor 4 alpha were observed with 6 and 12 days of lasmiditan treatment following AKI compared to vehicle control. While 6 days of lasmiditan treatment had no effect on failed repair genes, the administration of lasmiditan for 12 days decreased the levels of vascular cell adhesion protein 1, tumor necrosis factor α, and interleukin-1β, which drive maladaptive repair. These data reveal that lasmiditan treatment post-AKI differentially regulates successful and failed repair gene expression in the renal cortex, likely contributing to the restoration of renal function and providing a potential targeted therapeutic pathway for the treatment of AKI.</p>","PeriodicalId":36426,"journal":{"name":"ACS Pharmacology and Translational Science","volume":"7 10","pages":"3045-3055"},"PeriodicalIF":4.9000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11475317/pdf/","citationCount":"0","resultStr":"{\"title\":\"5-Hydroxytryptamine 1F Receptor Agonist Lasmiditan Differentially Regulates Successful Repair and Failed Repair Genes in a Mouse Model of Acute Kidney Injury.\",\"authors\":\"Paul Victor Santiago Raj, Natalie E Scholpa, Kevin A Hurtado, Jaroslav Janda, John Hortareas, Rick G Schnellmann\",\"doi\":\"10.1021/acsptsci.4c00246\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Increasing evidence substantiates the role of mitochondrial dysfunction, inflammation, fibrosis, and cell senescence in the onset and progression of acute kidney injury (AKI) to chronic kidney disease . The underlying governing cellular and transcriptional events, however, are not fully understood. Recently, the key factors that regulate successful and failed repair states in the proximal tubule have been identified at a single-cell resolution following bilateral ischemia-reperfusion (I/R) in a mouse model of AKI. Previously, our group showed that treatment with the FDA-approved selective 5-hydroxytryptamine receptor 1F agonist lasmiditan following AKI induces mitochondrial biogenesis , restores renal mitochondrial function, and increases renal and vascular recovery <i>in vivo</i>. Here, we assessed the effect of lasmiditan on transcriptional and translational changes that are responsible for successful repair, injury, and failed repair states in the renal cortex following I/R-induced AKI. Increased levels of successful repair genes such as acyl-coA synthase medium-chain family member 2a, low-density lipoprotein receptor-related protein 2, solute carrier family 5 member 12, and hepatocyte nuclear factor 4 alpha were observed with 6 and 12 days of lasmiditan treatment following AKI compared to vehicle control. While 6 days of lasmiditan treatment had no effect on failed repair genes, the administration of lasmiditan for 12 days decreased the levels of vascular cell adhesion protein 1, tumor necrosis factor α, and interleukin-1β, which drive maladaptive repair. These data reveal that lasmiditan treatment post-AKI differentially regulates successful and failed repair gene expression in the renal cortex, likely contributing to the restoration of renal function and providing a potential targeted therapeutic pathway for the treatment of AKI.</p>\",\"PeriodicalId\":36426,\"journal\":{\"name\":\"ACS Pharmacology and Translational Science\",\"volume\":\"7 10\",\"pages\":\"3045-3055\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2024-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11475317/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Pharmacology and Translational Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1021/acsptsci.4c00246\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/11 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Pharmacology and Translational Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/acsptsci.4c00246","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/11 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
5-Hydroxytryptamine 1F Receptor Agonist Lasmiditan Differentially Regulates Successful Repair and Failed Repair Genes in a Mouse Model of Acute Kidney Injury.
Increasing evidence substantiates the role of mitochondrial dysfunction, inflammation, fibrosis, and cell senescence in the onset and progression of acute kidney injury (AKI) to chronic kidney disease . The underlying governing cellular and transcriptional events, however, are not fully understood. Recently, the key factors that regulate successful and failed repair states in the proximal tubule have been identified at a single-cell resolution following bilateral ischemia-reperfusion (I/R) in a mouse model of AKI. Previously, our group showed that treatment with the FDA-approved selective 5-hydroxytryptamine receptor 1F agonist lasmiditan following AKI induces mitochondrial biogenesis , restores renal mitochondrial function, and increases renal and vascular recovery in vivo. Here, we assessed the effect of lasmiditan on transcriptional and translational changes that are responsible for successful repair, injury, and failed repair states in the renal cortex following I/R-induced AKI. Increased levels of successful repair genes such as acyl-coA synthase medium-chain family member 2a, low-density lipoprotein receptor-related protein 2, solute carrier family 5 member 12, and hepatocyte nuclear factor 4 alpha were observed with 6 and 12 days of lasmiditan treatment following AKI compared to vehicle control. While 6 days of lasmiditan treatment had no effect on failed repair genes, the administration of lasmiditan for 12 days decreased the levels of vascular cell adhesion protein 1, tumor necrosis factor α, and interleukin-1β, which drive maladaptive repair. These data reveal that lasmiditan treatment post-AKI differentially regulates successful and failed repair gene expression in the renal cortex, likely contributing to the restoration of renal function and providing a potential targeted therapeutic pathway for the treatment of AKI.
期刊介绍:
ACS Pharmacology & Translational Science publishes high quality, innovative, and impactful research across the broad spectrum of biological sciences, covering basic and molecular sciences through to translational preclinical studies. Clinical studies that address novel mechanisms of action, and methodological papers that provide innovation, and advance translation, will also be considered. We give priority to studies that fully integrate basic pharmacological and/or biochemical findings into physiological processes that have translational potential in a broad range of biomedical disciplines. Therefore, studies that employ a complementary blend of in vitro and in vivo systems are of particular interest to the journal. Nonetheless, all innovative and impactful research that has an articulated translational relevance will be considered.
ACS Pharmacology & Translational Science does not publish research on biological extracts that have unknown concentration or unknown chemical composition.
Authors are encouraged to use the pre-submission inquiry mechanism to ensure relevance and appropriateness of research.