精准精神病学需要因果推论。

IF 2.6 4区 医学 Q3 NEUROSCIENCES Acta Neuropsychiatrica Pub Date : 2024-10-17 DOI:10.1017/neu.2024.29
Martin Bernstorff, Oskar Hougaard Jefsen
{"title":"精准精神病学需要因果推论。","authors":"Martin Bernstorff, Oskar Hougaard Jefsen","doi":"10.1017/neu.2024.29","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Psychiatric research applies statistical methods that can be divided in two frameworks: causal inference and prediction. Recent proposals suggest a down-prioritisation of causal inference and argue that prediction paves the road to 'precision psychiatry' (i.e., individualised treatment). In this perspective, we critically appraise these proposals.</p><p><strong>Methods: </strong>We outline strengths and weaknesses of causal inference and prediction frameworks and describe the link between clinical decision-making and counterfactual predictions (i.e., causality). We describe three key causal structures that, if not handled correctly, may cause erroneous interpretations, and three pitfalls in prediction research.</p><p><strong>Results: </strong>Prediction and causal inference are both needed in psychiatric research and their relative importance is context-dependent. When individualised treatment decisions are needed, causal inference is necessary.</p><p><strong>Conclusion: </strong>This perspective defends the importance of causal inference for precision psychiatry.</p>","PeriodicalId":48964,"journal":{"name":"Acta Neuropsychiatrica","volume":" ","pages":"1-5"},"PeriodicalIF":2.6000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Precision psychiatry needs causal inference.\",\"authors\":\"Martin Bernstorff, Oskar Hougaard Jefsen\",\"doi\":\"10.1017/neu.2024.29\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>Psychiatric research applies statistical methods that can be divided in two frameworks: causal inference and prediction. Recent proposals suggest a down-prioritisation of causal inference and argue that prediction paves the road to 'precision psychiatry' (i.e., individualised treatment). In this perspective, we critically appraise these proposals.</p><p><strong>Methods: </strong>We outline strengths and weaknesses of causal inference and prediction frameworks and describe the link between clinical decision-making and counterfactual predictions (i.e., causality). We describe three key causal structures that, if not handled correctly, may cause erroneous interpretations, and three pitfalls in prediction research.</p><p><strong>Results: </strong>Prediction and causal inference are both needed in psychiatric research and their relative importance is context-dependent. When individualised treatment decisions are needed, causal inference is necessary.</p><p><strong>Conclusion: </strong>This perspective defends the importance of causal inference for precision psychiatry.</p>\",\"PeriodicalId\":48964,\"journal\":{\"name\":\"Acta Neuropsychiatrica\",\"volume\":\" \",\"pages\":\"1-5\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Neuropsychiatrica\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1017/neu.2024.29\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Neuropsychiatrica","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1017/neu.2024.29","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

目的:精神病学研究采用的统计方法可分为两个框架:因果推论和预测。最近有建议提出应降低因果推断的优先级,并认为预测为 "精准精神病学"(即个体化治疗)铺平了道路。从这个角度出发,我们对这些建议进行了批判性评估:我们概述了因果推理和预测框架的优缺点,并描述了临床决策与反事实预测(即因果关系)之间的联系。我们描述了如果处理不当可能导致错误解释的三个关键因果结构,以及预测研究中的三个陷阱:结果:精神病学研究既需要预测,也需要因果推理,而两者的相对重要性取决于具体情况。当需要做出个性化治疗决定时,因果推断是必要的:结论:这一观点捍卫了因果推论对于精准精神病学的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Precision psychiatry needs causal inference.

Objective: Psychiatric research applies statistical methods that can be divided in two frameworks: causal inference and prediction. Recent proposals suggest a down-prioritisation of causal inference and argue that prediction paves the road to 'precision psychiatry' (i.e., individualised treatment). In this perspective, we critically appraise these proposals.

Methods: We outline strengths and weaknesses of causal inference and prediction frameworks and describe the link between clinical decision-making and counterfactual predictions (i.e., causality). We describe three key causal structures that, if not handled correctly, may cause erroneous interpretations, and three pitfalls in prediction research.

Results: Prediction and causal inference are both needed in psychiatric research and their relative importance is context-dependent. When individualised treatment decisions are needed, causal inference is necessary.

Conclusion: This perspective defends the importance of causal inference for precision psychiatry.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta Neuropsychiatrica
Acta Neuropsychiatrica NEUROSCIENCES-PSYCHIATRY
自引率
5.30%
发文量
30
期刊介绍: Acta Neuropsychiatrica is an international journal focussing on translational neuropsychiatry. It publishes high-quality original research papers and reviews. The Journal''s scope specifically highlights the pathway from discovery to clinical applications, healthcare and global health that can be viewed broadly as the spectrum of work that marks the pathway from discovery to global health.
期刊最新文献
The effect of azelaic acid on AlCl3-induced neurocognitive impairments and molecular changes in the hippocampus of rats. Uncovering Key Predictive Channels and Clinical Variables in the Gamma Band Auditory Steady-State Response in Early Stage Psychosis - a Longitudinal Study. The combination of a glucagon-like peptide-1 and amylin receptor agonists reduces alcohol consumption in both male and female rats. Exploring the intersection of metabolic and neuropsychiatric health. Significant haematological alterations in clozapine-treated patients: prevalence and clinical correlation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1