{"title":"渗透信号通过受体样胞质激酶 BIK1 释放 PP2C 介导的拟南芥 SnRK2s 抑制作用。","authors":"Guo-Jun Li, Kong Chen, Shujing Sun, Yang Zhao","doi":"10.1038/s44318-024-00277-0","DOIUrl":null,"url":null,"abstract":"<p><p>Osmotic stress and abscisic acid (ABA) signaling are important for plant growth and abiotic stress resistance. Activation of osmotic and ABA signaling downstream of the PYL-type ABA receptors requires the release of SnRK2 protein kinases from the inhibition imposed by PP2Cs. PP2Cs are core negative regulators that constantly interact with and inhibit SnRK2s, but how osmotic signaling breaks the PP2C inhibition of SnRK2s remains unclear. Here, we report that an Arabidopsis receptor-like cytoplasmic kinase, BIK1, releases PP2C-mediated inhibition of SnRK2.6 via phosphorylation regulation. The dominant abi1-1 ABA-signaling mutation (G180D) disrupts PYL-PP2C interactions and disables PYL-initiated release of SnRK2s; in contrast, BIK1 releases abi1-1-mediated inhibition of SnRK2.6. BIK1 interacts with and phosphorylates SnRK2.6 at two tyrosine residues, which are critical for SnRK2.6 activation and function. Phosphorylation of the two tyrosine residues may affect the docking of the tryptophan \"lock\" of PP2C into SnRK2.6. Moreover, the bik1 mutant is defective in SnRK2 activation, stress-responsive gene expression, ABA accumulation, growth maintenance, and water loss under osmotic stress. Our findings uncover the critical role of BIK1 in releasing PP2C-mediated inhibition of SnRK2s under osmotic stress.</p>","PeriodicalId":50533,"journal":{"name":"EMBO Journal","volume":" ","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Osmotic signaling releases PP2C-mediated inhibition of Arabidopsis SnRK2s via the receptor-like cytoplasmic kinase BIK1.\",\"authors\":\"Guo-Jun Li, Kong Chen, Shujing Sun, Yang Zhao\",\"doi\":\"10.1038/s44318-024-00277-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Osmotic stress and abscisic acid (ABA) signaling are important for plant growth and abiotic stress resistance. Activation of osmotic and ABA signaling downstream of the PYL-type ABA receptors requires the release of SnRK2 protein kinases from the inhibition imposed by PP2Cs. PP2Cs are core negative regulators that constantly interact with and inhibit SnRK2s, but how osmotic signaling breaks the PP2C inhibition of SnRK2s remains unclear. Here, we report that an Arabidopsis receptor-like cytoplasmic kinase, BIK1, releases PP2C-mediated inhibition of SnRK2.6 via phosphorylation regulation. The dominant abi1-1 ABA-signaling mutation (G180D) disrupts PYL-PP2C interactions and disables PYL-initiated release of SnRK2s; in contrast, BIK1 releases abi1-1-mediated inhibition of SnRK2.6. BIK1 interacts with and phosphorylates SnRK2.6 at two tyrosine residues, which are critical for SnRK2.6 activation and function. Phosphorylation of the two tyrosine residues may affect the docking of the tryptophan \\\"lock\\\" of PP2C into SnRK2.6. Moreover, the bik1 mutant is defective in SnRK2 activation, stress-responsive gene expression, ABA accumulation, growth maintenance, and water loss under osmotic stress. Our findings uncover the critical role of BIK1 in releasing PP2C-mediated inhibition of SnRK2s under osmotic stress.</p>\",\"PeriodicalId\":50533,\"journal\":{\"name\":\"EMBO Journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2024-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EMBO Journal\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1038/s44318-024-00277-0\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EMBO Journal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s44318-024-00277-0","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Osmotic signaling releases PP2C-mediated inhibition of Arabidopsis SnRK2s via the receptor-like cytoplasmic kinase BIK1.
Osmotic stress and abscisic acid (ABA) signaling are important for plant growth and abiotic stress resistance. Activation of osmotic and ABA signaling downstream of the PYL-type ABA receptors requires the release of SnRK2 protein kinases from the inhibition imposed by PP2Cs. PP2Cs are core negative regulators that constantly interact with and inhibit SnRK2s, but how osmotic signaling breaks the PP2C inhibition of SnRK2s remains unclear. Here, we report that an Arabidopsis receptor-like cytoplasmic kinase, BIK1, releases PP2C-mediated inhibition of SnRK2.6 via phosphorylation regulation. The dominant abi1-1 ABA-signaling mutation (G180D) disrupts PYL-PP2C interactions and disables PYL-initiated release of SnRK2s; in contrast, BIK1 releases abi1-1-mediated inhibition of SnRK2.6. BIK1 interacts with and phosphorylates SnRK2.6 at two tyrosine residues, which are critical for SnRK2.6 activation and function. Phosphorylation of the two tyrosine residues may affect the docking of the tryptophan "lock" of PP2C into SnRK2.6. Moreover, the bik1 mutant is defective in SnRK2 activation, stress-responsive gene expression, ABA accumulation, growth maintenance, and water loss under osmotic stress. Our findings uncover the critical role of BIK1 in releasing PP2C-mediated inhibition of SnRK2s under osmotic stress.
期刊介绍:
The EMBO Journal has stood as EMBO's flagship publication since its inception in 1982. Renowned for its international reputation in quality and originality, the journal spans all facets of molecular biology. It serves as a platform for papers elucidating original research of broad general interest in molecular and cell biology, with a distinct focus on molecular mechanisms and physiological relevance.
With a commitment to promoting articles reporting novel findings of broad biological significance, The EMBO Journal stands as a key contributor to advancing the field of molecular biology.