Peng Liu, Seba Nadeef, Maged F Serag, Andreu Paytuví-Gallart, Maram Abadi, Francesco Della Valle, Santiago Radío, Xènia Roda, Jaïr Dilmé Capó, Sabir Adroub, Nadine Hosny El Said, Bodor Fallatah, Mirko Celii, Gian Marco Messa, Mengge Wang, Mo Li, Paola Tognini, Lorena Aguilar-Arnal, Satoshi Habuchi, Selma Masri, Paolo Sassone-Corsi, Valerio Orlando
{"title":"PRC2-EZH1 通过协调染色质状态和 RNA 聚合酶 II 复合物的稳定性促进昼夜节律基因的表达。","authors":"Peng Liu, Seba Nadeef, Maged F Serag, Andreu Paytuví-Gallart, Maram Abadi, Francesco Della Valle, Santiago Radío, Xènia Roda, Jaïr Dilmé Capó, Sabir Adroub, Nadine Hosny El Said, Bodor Fallatah, Mirko Celii, Gian Marco Messa, Mengge Wang, Mo Li, Paola Tognini, Lorena Aguilar-Arnal, Satoshi Habuchi, Selma Masri, Paolo Sassone-Corsi, Valerio Orlando","doi":"10.1038/s44318-024-00267-2","DOIUrl":null,"url":null,"abstract":"<p><p>Circadian rhythmicity of gene expression is a conserved feature of cell physiology. This involves fine-tuning between transcriptional and post-transcriptional mechanisms and strongly depends on the metabolic state of the cell. Together these processes guarantee an adaptive plasticity of tissue-specific genetic programs. However, it is unclear how the epigenome and RNA Pol II rhythmicity are integrated. Here we show that the PcG protein EZH1 has a gateway bridging function in postmitotic skeletal muscle cells. On the one hand, the circadian clock master regulator BMAL1 directly controls oscillatory behavior and periodic assembly of core components of the PRC2-EZH1 complex. On the other hand, EZH1 is essential for circadian gene expression at alternate Zeitgeber times, through stabilization of RNA Polymerase II preinitiation complexes, thereby controlling nascent transcription. Collectively, our data show that PRC2-EZH1 regulates circadian transcription both negatively and positively by modulating chromatin states and basal transcription complex stability.</p>","PeriodicalId":50533,"journal":{"name":"EMBO Journal","volume":" ","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PRC2-EZH1 contributes to circadian gene expression by orchestrating chromatin states and RNA polymerase II complex stability.\",\"authors\":\"Peng Liu, Seba Nadeef, Maged F Serag, Andreu Paytuví-Gallart, Maram Abadi, Francesco Della Valle, Santiago Radío, Xènia Roda, Jaïr Dilmé Capó, Sabir Adroub, Nadine Hosny El Said, Bodor Fallatah, Mirko Celii, Gian Marco Messa, Mengge Wang, Mo Li, Paola Tognini, Lorena Aguilar-Arnal, Satoshi Habuchi, Selma Masri, Paolo Sassone-Corsi, Valerio Orlando\",\"doi\":\"10.1038/s44318-024-00267-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Circadian rhythmicity of gene expression is a conserved feature of cell physiology. This involves fine-tuning between transcriptional and post-transcriptional mechanisms and strongly depends on the metabolic state of the cell. Together these processes guarantee an adaptive plasticity of tissue-specific genetic programs. However, it is unclear how the epigenome and RNA Pol II rhythmicity are integrated. Here we show that the PcG protein EZH1 has a gateway bridging function in postmitotic skeletal muscle cells. On the one hand, the circadian clock master regulator BMAL1 directly controls oscillatory behavior and periodic assembly of core components of the PRC2-EZH1 complex. On the other hand, EZH1 is essential for circadian gene expression at alternate Zeitgeber times, through stabilization of RNA Polymerase II preinitiation complexes, thereby controlling nascent transcription. Collectively, our data show that PRC2-EZH1 regulates circadian transcription both negatively and positively by modulating chromatin states and basal transcription complex stability.</p>\",\"PeriodicalId\":50533,\"journal\":{\"name\":\"EMBO Journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2024-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EMBO Journal\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1038/s44318-024-00267-2\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EMBO Journal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s44318-024-00267-2","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
基因表达的昼夜节律性是细胞生理学的一个保守特征。这涉及转录和转录后机制之间的微调,并在很大程度上取决于细胞的新陈代谢状态。这些过程共同保证了组织特异性基因程序的适应性可塑性。然而,目前还不清楚表观基因组和 RNA Pol II 的节律性是如何整合的。我们在这里发现,PcG 蛋白 EZH1 在有丝分裂后的骨骼肌细胞中具有网关桥接功能。一方面,昼夜节律主调节因子 BMAL1 直接控制着 PRC2-EZH1 复合物核心成分的振荡行为和周期性组装。另一方面,EZH1 通过稳定 RNA 聚合酶 II 预启动复合物,从而控制新生转录,对昼夜节律基因在交替时间的表达至关重要。总之,我们的数据表明,PRC2-EZH1 通过调节染色质状态和基础转录复合物的稳定性,对昼夜节律转录起着消极和积极的调节作用。
PRC2-EZH1 contributes to circadian gene expression by orchestrating chromatin states and RNA polymerase II complex stability.
Circadian rhythmicity of gene expression is a conserved feature of cell physiology. This involves fine-tuning between transcriptional and post-transcriptional mechanisms and strongly depends on the metabolic state of the cell. Together these processes guarantee an adaptive plasticity of tissue-specific genetic programs. However, it is unclear how the epigenome and RNA Pol II rhythmicity are integrated. Here we show that the PcG protein EZH1 has a gateway bridging function in postmitotic skeletal muscle cells. On the one hand, the circadian clock master regulator BMAL1 directly controls oscillatory behavior and periodic assembly of core components of the PRC2-EZH1 complex. On the other hand, EZH1 is essential for circadian gene expression at alternate Zeitgeber times, through stabilization of RNA Polymerase II preinitiation complexes, thereby controlling nascent transcription. Collectively, our data show that PRC2-EZH1 regulates circadian transcription both negatively and positively by modulating chromatin states and basal transcription complex stability.
期刊介绍:
The EMBO Journal has stood as EMBO's flagship publication since its inception in 1982. Renowned for its international reputation in quality and originality, the journal spans all facets of molecular biology. It serves as a platform for papers elucidating original research of broad general interest in molecular and cell biology, with a distinct focus on molecular mechanisms and physiological relevance.
With a commitment to promoting articles reporting novel findings of broad biological significance, The EMBO Journal stands as a key contributor to advancing the field of molecular biology.