{"title":"利用 CRISPR/Cas 基因编辑和其他技术培育抗除草剂水稻(Oryza sativa)。","authors":"Qiyu Luo, Yao-Guang Liu","doi":"10.1016/j.xplc.2024.101172","DOIUrl":null,"url":null,"abstract":"<p><p>The emergence of herbicide-resistant weeds in crop fields and the extensive use of herbicides have led to a decrease in rice (Oryza sativa) yields and an increase in production costs. To address these challenges, researchers have focused on the discovery of new germplasm resources with herbicide resistance. The most promising candidate genes have been functionally studied and applied in rice breeding. Here, we review recent progress in the breeding of herbicide-resistant rice. We provide examples of various techniques used to breed herbicide-resistant rice, such as physical and chemical mutagenesis, genetic transformation, and CRISPR-Cas-mediated gene editing. We highlight factors involved in the breeding of herbicide-resistant rice, including target genes, rice varieties, degrees of herbicide resistance, and research tools. Finally, we suggest methods for breeding herbicide-resistant rice that could potentially be used for weed management in direct-seeding farm systems.</p>","PeriodicalId":52373,"journal":{"name":"Plant Communications","volume":" ","pages":"101172"},"PeriodicalIF":9.4000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Breeding herbicide-resistant rice using CRISPR-Cas gene editing and other technologies.\",\"authors\":\"Qiyu Luo, Yao-Guang Liu\",\"doi\":\"10.1016/j.xplc.2024.101172\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The emergence of herbicide-resistant weeds in crop fields and the extensive use of herbicides have led to a decrease in rice (Oryza sativa) yields and an increase in production costs. To address these challenges, researchers have focused on the discovery of new germplasm resources with herbicide resistance. The most promising candidate genes have been functionally studied and applied in rice breeding. Here, we review recent progress in the breeding of herbicide-resistant rice. We provide examples of various techniques used to breed herbicide-resistant rice, such as physical and chemical mutagenesis, genetic transformation, and CRISPR-Cas-mediated gene editing. We highlight factors involved in the breeding of herbicide-resistant rice, including target genes, rice varieties, degrees of herbicide resistance, and research tools. Finally, we suggest methods for breeding herbicide-resistant rice that could potentially be used for weed management in direct-seeding farm systems.</p>\",\"PeriodicalId\":52373,\"journal\":{\"name\":\"Plant Communications\",\"volume\":\" \",\"pages\":\"101172\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2025-02-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Communications\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.xplc.2024.101172\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/12 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Communications","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.xplc.2024.101172","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/12 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Breeding herbicide-resistant rice using CRISPR-Cas gene editing and other technologies.
The emergence of herbicide-resistant weeds in crop fields and the extensive use of herbicides have led to a decrease in rice (Oryza sativa) yields and an increase in production costs. To address these challenges, researchers have focused on the discovery of new germplasm resources with herbicide resistance. The most promising candidate genes have been functionally studied and applied in rice breeding. Here, we review recent progress in the breeding of herbicide-resistant rice. We provide examples of various techniques used to breed herbicide-resistant rice, such as physical and chemical mutagenesis, genetic transformation, and CRISPR-Cas-mediated gene editing. We highlight factors involved in the breeding of herbicide-resistant rice, including target genes, rice varieties, degrees of herbicide resistance, and research tools. Finally, we suggest methods for breeding herbicide-resistant rice that could potentially be used for weed management in direct-seeding farm systems.
期刊介绍:
Plant Communications is an open access publishing platform that supports the global plant science community. It publishes original research, review articles, technical advances, and research resources in various areas of plant sciences. The scope of topics includes evolution, ecology, physiology, biochemistry, development, reproduction, metabolism, molecular and cellular biology, genetics, genomics, environmental interactions, biotechnology, breeding of higher and lower plants, and their interactions with other organisms. The goal of Plant Communications is to provide a high-quality platform for the dissemination of plant science research.