Zhang Xinyue, Siwei Li, Wang Yujie, Dai Yingcai, Bi Changhao, Zhang Xueli
{"title":"通过高通量选择基因对 HEK293T 细胞工厂进行工程改造,以生产慢病毒。","authors":"Zhang Xinyue, Siwei Li, Wang Yujie, Dai Yingcai, Bi Changhao, Zhang Xueli","doi":"10.1089/crispr.2024.0016","DOIUrl":null,"url":null,"abstract":"<p><p>Lentiviral vectors (LVs) are crucial tools in gene therapy and bioproduction, but high-yield LV production systems are urgently needed. Using clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 high-throughput screening, we identified nine critical genes (<i>LDAH, GBP3, BPIFC, NHLRC1, NHLRC3, ZNF425, TTC37, LRRC4B</i>, and <i>SPINK6</i>) from 17,501 genes that limit LV packaging and formation. Knocking out these genes in HEK293T cells significantly increased virus production, with <i>LDAH</i> knockout exhibiting a 6.63-fold increase. Studies on multigene knockouts demonstrated that the cumulative effects of different gene knockouts can significantly enhance lentivirus production in HEK293T cells. Triple knockout of <i>GBP3, BPIFC</i>, and <i>LDAH</i> increased LV titer by ∼8.33-fold, and knockout (or knockdown) of <i>GBP3, NHLRC1,</i> and <i>NHLRC3</i> increased LV titer by ∼6.53-fold. This study established HEK293T cell lines with multiple genes knockout for efficient LV production, providing reliable technical support for LV production and application and offering new perspectives for studying LV packaging mechanisms and related virus research.</p>","PeriodicalId":54232,"journal":{"name":"CRISPR Journal","volume":"7 5","pages":"272-282"},"PeriodicalIF":3.7000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Engineering of HEK293T Cell Factory for Lentiviral Production by High-Throughput Selected Genes.\",\"authors\":\"Zhang Xinyue, Siwei Li, Wang Yujie, Dai Yingcai, Bi Changhao, Zhang Xueli\",\"doi\":\"10.1089/crispr.2024.0016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Lentiviral vectors (LVs) are crucial tools in gene therapy and bioproduction, but high-yield LV production systems are urgently needed. Using clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 high-throughput screening, we identified nine critical genes (<i>LDAH, GBP3, BPIFC, NHLRC1, NHLRC3, ZNF425, TTC37, LRRC4B</i>, and <i>SPINK6</i>) from 17,501 genes that limit LV packaging and formation. Knocking out these genes in HEK293T cells significantly increased virus production, with <i>LDAH</i> knockout exhibiting a 6.63-fold increase. Studies on multigene knockouts demonstrated that the cumulative effects of different gene knockouts can significantly enhance lentivirus production in HEK293T cells. Triple knockout of <i>GBP3, BPIFC</i>, and <i>LDAH</i> increased LV titer by ∼8.33-fold, and knockout (or knockdown) of <i>GBP3, NHLRC1,</i> and <i>NHLRC3</i> increased LV titer by ∼6.53-fold. This study established HEK293T cell lines with multiple genes knockout for efficient LV production, providing reliable technical support for LV production and application and offering new perspectives for studying LV packaging mechanisms and related virus research.</p>\",\"PeriodicalId\":54232,\"journal\":{\"name\":\"CRISPR Journal\",\"volume\":\"7 5\",\"pages\":\"272-282\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CRISPR Journal\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1089/crispr.2024.0016\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/16 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CRISPR Journal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1089/crispr.2024.0016","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/16 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
Engineering of HEK293T Cell Factory for Lentiviral Production by High-Throughput Selected Genes.
Lentiviral vectors (LVs) are crucial tools in gene therapy and bioproduction, but high-yield LV production systems are urgently needed. Using clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 high-throughput screening, we identified nine critical genes (LDAH, GBP3, BPIFC, NHLRC1, NHLRC3, ZNF425, TTC37, LRRC4B, and SPINK6) from 17,501 genes that limit LV packaging and formation. Knocking out these genes in HEK293T cells significantly increased virus production, with LDAH knockout exhibiting a 6.63-fold increase. Studies on multigene knockouts demonstrated that the cumulative effects of different gene knockouts can significantly enhance lentivirus production in HEK293T cells. Triple knockout of GBP3, BPIFC, and LDAH increased LV titer by ∼8.33-fold, and knockout (or knockdown) of GBP3, NHLRC1, and NHLRC3 increased LV titer by ∼6.53-fold. This study established HEK293T cell lines with multiple genes knockout for efficient LV production, providing reliable technical support for LV production and application and offering new perspectives for studying LV packaging mechanisms and related virus research.
CRISPR JournalBiochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
6.30
自引率
2.70%
发文量
76
期刊介绍:
In recognition of this extraordinary scientific and technological era, Mary Ann Liebert, Inc., publishers recently announced the creation of The CRISPR Journal -- an international, multidisciplinary peer-reviewed journal publishing outstanding research on the myriad applications and underlying technology of CRISPR.
Debuting in 2018, The CRISPR Journal will be published online and in print with flexible open access options, providing a high-profile venue for groundbreaking research, as well as lively and provocative commentary, analysis, and debate. The CRISPR Journal adds an exciting and dynamic component to the Mary Ann Liebert, Inc. portfolio, which includes GEN (Genetic Engineering & Biotechnology News) and more than 80 leading peer-reviewed journals.