探索植物生物学和生物工程中的小蛋白质世界。

IF 13.6 2区 生物学 Q1 GENETICS & HEREDITY Trends in Genetics Pub Date : 2024-10-14 DOI:10.1016/j.tig.2024.09.004
Louise Petri, Anne Van Humbeeck, Huanying Niu, Casper Ter Waarbeek, Ashleigh Edwards, Maurizio Junior Chiurazzi, Ylenia Vittozzi, Stephan Wenkel
{"title":"探索植物生物学和生物工程中的小蛋白质世界。","authors":"Louise Petri, Anne Van Humbeeck, Huanying Niu, Casper Ter Waarbeek, Ashleigh Edwards, Maurizio Junior Chiurazzi, Ylenia Vittozzi, Stephan Wenkel","doi":"10.1016/j.tig.2024.09.004","DOIUrl":null,"url":null,"abstract":"<p><p>Small proteins are ubiquitous in all kingdoms of life. MicroProteins, initially characterized as small proteins with protein interaction domains that enable them to interact with larger multidomain proteins, frequently modulate the function of these proteins. The study of these small proteins has contributed to a greater comprehension of protein regulation. In addition to sequence homology, sequence-divergent small proteins have the potential to function as microProtein mimics, binding to structurally related proteins. Moreover, a multitude of other small proteins encoded by short open reading frames (sORFs) and peptides, derived from diverse sources such as long noncoding RNAs (lncRNAs) and miRNAs, contribute to a variety of biological processes. The potential of small proteins is evident, offering promising avenues for bioengineering that could revolutionize crop performance and reduce reliance on agrochemicals in future agriculture.</p>","PeriodicalId":54413,"journal":{"name":"Trends in Genetics","volume":" ","pages":""},"PeriodicalIF":13.6000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring the world of small proteins in plant biology and bioengineering.\",\"authors\":\"Louise Petri, Anne Van Humbeeck, Huanying Niu, Casper Ter Waarbeek, Ashleigh Edwards, Maurizio Junior Chiurazzi, Ylenia Vittozzi, Stephan Wenkel\",\"doi\":\"10.1016/j.tig.2024.09.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Small proteins are ubiquitous in all kingdoms of life. MicroProteins, initially characterized as small proteins with protein interaction domains that enable them to interact with larger multidomain proteins, frequently modulate the function of these proteins. The study of these small proteins has contributed to a greater comprehension of protein regulation. In addition to sequence homology, sequence-divergent small proteins have the potential to function as microProtein mimics, binding to structurally related proteins. Moreover, a multitude of other small proteins encoded by short open reading frames (sORFs) and peptides, derived from diverse sources such as long noncoding RNAs (lncRNAs) and miRNAs, contribute to a variety of biological processes. The potential of small proteins is evident, offering promising avenues for bioengineering that could revolutionize crop performance and reduce reliance on agrochemicals in future agriculture.</p>\",\"PeriodicalId\":54413,\"journal\":{\"name\":\"Trends in Genetics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":13.6000,\"publicationDate\":\"2024-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Trends in Genetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.tig.2024.09.004\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.tig.2024.09.004","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

摘要

小蛋白质在生命的各个领域无处不在。微小蛋白质最初被描述为具有蛋白质相互作用结构域的小蛋白质,这些结构域使它们能够与较大的多结构域蛋白质相互作用,并经常调节这些蛋白质的功能。对这些小蛋白的研究有助于加深对蛋白质调控的理解。除了序列同源性外,序列差异小蛋白还有可能作为微蛋白模拟物,与结构相关的蛋白结合。此外,由短开放阅读框(sORFs)和肽编码的大量其他小蛋白,来自长非编码 RNAs(lncRNAs)和 miRNAs 等不同来源,有助于各种生物过程。小蛋白质的潜力显而易见,为生物工程提供了大有可为的途径,可彻底改变作物的性能,减少未来农业对农用化学品的依赖。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Exploring the world of small proteins in plant biology and bioengineering.

Small proteins are ubiquitous in all kingdoms of life. MicroProteins, initially characterized as small proteins with protein interaction domains that enable them to interact with larger multidomain proteins, frequently modulate the function of these proteins. The study of these small proteins has contributed to a greater comprehension of protein regulation. In addition to sequence homology, sequence-divergent small proteins have the potential to function as microProtein mimics, binding to structurally related proteins. Moreover, a multitude of other small proteins encoded by short open reading frames (sORFs) and peptides, derived from diverse sources such as long noncoding RNAs (lncRNAs) and miRNAs, contribute to a variety of biological processes. The potential of small proteins is evident, offering promising avenues for bioengineering that could revolutionize crop performance and reduce reliance on agrochemicals in future agriculture.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Trends in Genetics
Trends in Genetics 生物-遗传学
CiteScore
20.90
自引率
0.90%
发文量
160
审稿时长
6-12 weeks
期刊介绍: Launched in 1985, Trends in Genetics swiftly established itself as a "must-read" for geneticists, offering concise, accessible articles covering a spectrum of topics from developmental biology to evolution. This reputation endures, making TiG a cherished resource in the genetic research community. While evolving with the field, the journal now embraces new areas like genomics, epigenetics, and computational genetics, alongside its continued coverage of traditional subjects such as transcriptional regulation, population genetics, and chromosome biology. Despite expanding its scope, the core objective of TiG remains steadfast: to furnish researchers and students with high-quality, innovative reviews, commentaries, and discussions, fostering an appreciation for advances in genetic research. Each issue of TiG presents lively and up-to-date Reviews and Opinions, alongside shorter articles like Science & Society and Spotlight pieces. Invited from leading researchers, Reviews objectively chronicle recent developments, Opinions provide a forum for debate and hypothesis, and shorter articles explore the intersection of genetics with science and policy, as well as emerging ideas in the field. All articles undergo rigorous peer-review.
期刊最新文献
Cell-free DNA from clinical testing as a resource of population genetic analysis. Developmental evolution in fast-forward: insect male genital diversification. PIC-king apart PRC1-mediated repression. Why are RNA processing factors recruited to DNA double-strand breaks? Role of ATP-dependent chromatin remodelers in meiosis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1