{"title":"二氢丹参酮 I 通过 PTPN11/p38 通路诱导胃癌坏死和细胞周期停滞","authors":"Aizhen Li, Mingjin Yang, Wenbiao Duan, Bo Wu","doi":"10.1016/j.tiv.2024.105955","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, MTT assays, apoptosis detection, immunofluorescence, and functional studies were used to elucidate the mechanisms underlying the effects of dihydrotanshinone I (DHT) on gastric cancer cells. Drug target prediction and analysis were conducted to identify potential targets of DHT. MTT assay revealed significant inhibition of AGS and HGC27 cells by DHT. Morphological changes, including nuclear shrinkage and the induction of necrotic cell death, were observed in DHT-treated gastric cancer cells, along with cell cycle arrest at the G2/M phase. Further analysis revealed potential targets of DHT, including PTPN11, which is highly expressed in gastric cancer cells. DHT treatment increased necrosis-related proteins (RIPK1/RIPK3/MLKL) and downregulated cell cycle-related proteins (CDC25C and CDK1) levels in gastric cancer cells. After DHT treatment, PTPN11 protein expression decreased. Furthermore, DHT significantly increased the phosphorylated p38/JNK protein level, with the phosphorylated p38 protein notably enriched in the nucleus. These functional studies indicate that PTPN11 plays a key role in mediating the effects of DHT, including cell cycle regulation and necrosis induction. In conclusion, PTPN11 is a central target through which DHT affects gastric cancer cells, regulating downstream pathways involved in necroptosis (p38/RIPK1/RIPK3/MLKL/JNK) and cell cycle arrest (p38/CDC25C/CDK1).</div></div>","PeriodicalId":54423,"journal":{"name":"Toxicology in Vitro","volume":"102 ","pages":"Article 105955"},"PeriodicalIF":2.6000,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dihydrotanshinone I induces necroptosis and cell cycle arrest in gastric cancer through the PTPN11/p38 pathway\",\"authors\":\"Aizhen Li, Mingjin Yang, Wenbiao Duan, Bo Wu\",\"doi\":\"10.1016/j.tiv.2024.105955\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this study, MTT assays, apoptosis detection, immunofluorescence, and functional studies were used to elucidate the mechanisms underlying the effects of dihydrotanshinone I (DHT) on gastric cancer cells. Drug target prediction and analysis were conducted to identify potential targets of DHT. MTT assay revealed significant inhibition of AGS and HGC27 cells by DHT. Morphological changes, including nuclear shrinkage and the induction of necrotic cell death, were observed in DHT-treated gastric cancer cells, along with cell cycle arrest at the G2/M phase. Further analysis revealed potential targets of DHT, including PTPN11, which is highly expressed in gastric cancer cells. DHT treatment increased necrosis-related proteins (RIPK1/RIPK3/MLKL) and downregulated cell cycle-related proteins (CDC25C and CDK1) levels in gastric cancer cells. After DHT treatment, PTPN11 protein expression decreased. Furthermore, DHT significantly increased the phosphorylated p38/JNK protein level, with the phosphorylated p38 protein notably enriched in the nucleus. These functional studies indicate that PTPN11 plays a key role in mediating the effects of DHT, including cell cycle regulation and necrosis induction. In conclusion, PTPN11 is a central target through which DHT affects gastric cancer cells, regulating downstream pathways involved in necroptosis (p38/RIPK1/RIPK3/MLKL/JNK) and cell cycle arrest (p38/CDC25C/CDK1).</div></div>\",\"PeriodicalId\":54423,\"journal\":{\"name\":\"Toxicology in Vitro\",\"volume\":\"102 \",\"pages\":\"Article 105955\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Toxicology in Vitro\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0887233324001851\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"TOXICOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicology in Vitro","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0887233324001851","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"TOXICOLOGY","Score":null,"Total":0}
Dihydrotanshinone I induces necroptosis and cell cycle arrest in gastric cancer through the PTPN11/p38 pathway
In this study, MTT assays, apoptosis detection, immunofluorescence, and functional studies were used to elucidate the mechanisms underlying the effects of dihydrotanshinone I (DHT) on gastric cancer cells. Drug target prediction and analysis were conducted to identify potential targets of DHT. MTT assay revealed significant inhibition of AGS and HGC27 cells by DHT. Morphological changes, including nuclear shrinkage and the induction of necrotic cell death, were observed in DHT-treated gastric cancer cells, along with cell cycle arrest at the G2/M phase. Further analysis revealed potential targets of DHT, including PTPN11, which is highly expressed in gastric cancer cells. DHT treatment increased necrosis-related proteins (RIPK1/RIPK3/MLKL) and downregulated cell cycle-related proteins (CDC25C and CDK1) levels in gastric cancer cells. After DHT treatment, PTPN11 protein expression decreased. Furthermore, DHT significantly increased the phosphorylated p38/JNK protein level, with the phosphorylated p38 protein notably enriched in the nucleus. These functional studies indicate that PTPN11 plays a key role in mediating the effects of DHT, including cell cycle regulation and necrosis induction. In conclusion, PTPN11 is a central target through which DHT affects gastric cancer cells, regulating downstream pathways involved in necroptosis (p38/RIPK1/RIPK3/MLKL/JNK) and cell cycle arrest (p38/CDC25C/CDK1).
期刊介绍:
Toxicology in Vitro publishes original research papers and reviews on the application and use of in vitro systems for assessing or predicting the toxic effects of chemicals and elucidating their mechanisms of action. These in vitro techniques include utilizing cell or tissue cultures, isolated cells, tissue slices, subcellular fractions, transgenic cell cultures, and cells from transgenic organisms, as well as in silico modelling. The Journal will focus on investigations that involve the development and validation of new in vitro methods, e.g. for prediction of toxic effects based on traditional and in silico modelling; on the use of methods in high-throughput toxicology and pharmacology; elucidation of mechanisms of toxic action; the application of genomics, transcriptomics and proteomics in toxicology, as well as on comparative studies that characterise the relationship between in vitro and in vivo findings. The Journal strongly encourages the submission of manuscripts that focus on the development of in vitro methods, their practical applications and regulatory use (e.g. in the areas of food components cosmetics, pharmaceuticals, pesticides, and industrial chemicals). Toxicology in Vitro discourages papers that record reporting on toxicological effects from materials, such as plant extracts or herbal medicines, that have not been chemically characterized.