空间转录组的空间域识别方法综述。

IF 2.5 3区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Briefings in Functional Genomics Pub Date : 2024-12-06 DOI:10.1093/bfgp/elae040
Ziyi Wang, Aoyun Geng, Hao Duan, Feifei Cui, Quan Zou, Zilong Zhang
{"title":"空间转录组的空间域识别方法综述。","authors":"Ziyi Wang, Aoyun Geng, Hao Duan, Feifei Cui, Quan Zou, Zilong Zhang","doi":"10.1093/bfgp/elae040","DOIUrl":null,"url":null,"abstract":"<p><p>In current bioinformatics research, spatial transcriptomics (ST) as a rapidly evolving technology is gradually receiving widespread attention from researchers. Spatial domains are regions where gene expression and histology are consistent in space, and detecting spatial domains can better understand the organization and functional distribution of tissues. Spatial domain recognition is a fundamental step in the process of ST data interpretation, which is also a major challenge in ST analysis. Therefore, developing more accurate, efficient, and general spatial domain recognition methods has become an important and urgent research direction. This article aims to review the current status and progress of spatial domain recognition research, explore the advantages and limitations of existing methods, and provide suggestions and directions for future tool development.</p>","PeriodicalId":55323,"journal":{"name":"Briefings in Functional Genomics","volume":" ","pages":"702-712"},"PeriodicalIF":2.5000,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A comprehensive review of approaches for spatial domain recognition of spatial transcriptomes.\",\"authors\":\"Ziyi Wang, Aoyun Geng, Hao Duan, Feifei Cui, Quan Zou, Zilong Zhang\",\"doi\":\"10.1093/bfgp/elae040\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In current bioinformatics research, spatial transcriptomics (ST) as a rapidly evolving technology is gradually receiving widespread attention from researchers. Spatial domains are regions where gene expression and histology are consistent in space, and detecting spatial domains can better understand the organization and functional distribution of tissues. Spatial domain recognition is a fundamental step in the process of ST data interpretation, which is also a major challenge in ST analysis. Therefore, developing more accurate, efficient, and general spatial domain recognition methods has become an important and urgent research direction. This article aims to review the current status and progress of spatial domain recognition research, explore the advantages and limitations of existing methods, and provide suggestions and directions for future tool development.</p>\",\"PeriodicalId\":55323,\"journal\":{\"name\":\"Briefings in Functional Genomics\",\"volume\":\" \",\"pages\":\"702-712\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Briefings in Functional Genomics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/bfgp/elae040\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in Functional Genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bfgp/elae040","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

在当前的生物信息学研究中,空间转录组学(ST)作为一种快速发展的技术正逐渐受到研究人员的广泛关注。空间域是基因表达和组织学在空间上一致的区域,检测空间域可以更好地了解组织的组织和功能分布。空间域识别是 ST 数据解读过程中的基础步骤,也是 ST 分析中的一大挑战。因此,开发更准确、高效、通用的空间域识别方法已成为一个重要而紧迫的研究方向。本文旨在回顾空间域识别研究的现状和进展,探讨现有方法的优势和局限,并为未来工具的开发提供建议和方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A comprehensive review of approaches for spatial domain recognition of spatial transcriptomes.

In current bioinformatics research, spatial transcriptomics (ST) as a rapidly evolving technology is gradually receiving widespread attention from researchers. Spatial domains are regions where gene expression and histology are consistent in space, and detecting spatial domains can better understand the organization and functional distribution of tissues. Spatial domain recognition is a fundamental step in the process of ST data interpretation, which is also a major challenge in ST analysis. Therefore, developing more accurate, efficient, and general spatial domain recognition methods has become an important and urgent research direction. This article aims to review the current status and progress of spatial domain recognition research, explore the advantages and limitations of existing methods, and provide suggestions and directions for future tool development.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Briefings in Functional Genomics
Briefings in Functional Genomics BIOTECHNOLOGY & APPLIED MICROBIOLOGY-GENETICS & HEREDITY
CiteScore
6.30
自引率
2.50%
发文量
37
审稿时长
6-12 weeks
期刊介绍: Briefings in Functional Genomics publishes high quality peer reviewed articles that focus on the use, development or exploitation of genomic approaches, and their application to all areas of biological research. As well as exploring thematic areas where these techniques and protocols are being used, articles review the impact that these approaches have had, or are likely to have, on their field. Subjects covered by the Journal include but are not restricted to: the identification and functional characterisation of coding and non-coding features in genomes, microarray technologies, gene expression profiling, next generation sequencing, pharmacogenomics, phenomics, SNP technologies, transgenic systems, mutation screens and genotyping. Articles range in scope and depth from the introductory level to specific details of protocols and analyses, encompassing bacterial, fungal, plant, animal and human data. The editorial board welcome the submission of review articles for publication. Essential criteria for the publication of papers is that they do not contain primary data, and that they are high quality, clearly written review articles which provide a balanced, highly informative and up to date perspective to researchers in the field of functional genomics.
期刊最新文献
Sesame Genomic Web Resource (SesameGWR): a well-annotated data resource for transcriptomic signatures of abiotic and biotic stress responses in sesame (Sesamum indicum L.). A comprehensive survey of dimensionality reduction and clustering methods for single-cell and spatial transcriptomics data. AMLdb: a comprehensive multi-omics platform to identify biomarkers and drug targets for acute myeloid leukemia. Advances in integrating single-cell sequencing data to unravel the mechanism of ferroptosis in cancer. Long-read RNA sequencing can probe organelle genome pervasive transcription.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1