{"title":"空间转录组的空间域识别方法综述。","authors":"Ziyi Wang, Aoyun Geng, Hao Duan, Feifei Cui, Quan Zou, Zilong Zhang","doi":"10.1093/bfgp/elae040","DOIUrl":null,"url":null,"abstract":"<p><p>In current bioinformatics research, spatial transcriptomics (ST) as a rapidly evolving technology is gradually receiving widespread attention from researchers. Spatial domains are regions where gene expression and histology are consistent in space, and detecting spatial domains can better understand the organization and functional distribution of tissues. Spatial domain recognition is a fundamental step in the process of ST data interpretation, which is also a major challenge in ST analysis. Therefore, developing more accurate, efficient, and general spatial domain recognition methods has become an important and urgent research direction. This article aims to review the current status and progress of spatial domain recognition research, explore the advantages and limitations of existing methods, and provide suggestions and directions for future tool development.</p>","PeriodicalId":55323,"journal":{"name":"Briefings in Functional Genomics","volume":" ","pages":"702-712"},"PeriodicalIF":2.5000,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A comprehensive review of approaches for spatial domain recognition of spatial transcriptomes.\",\"authors\":\"Ziyi Wang, Aoyun Geng, Hao Duan, Feifei Cui, Quan Zou, Zilong Zhang\",\"doi\":\"10.1093/bfgp/elae040\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In current bioinformatics research, spatial transcriptomics (ST) as a rapidly evolving technology is gradually receiving widespread attention from researchers. Spatial domains are regions where gene expression and histology are consistent in space, and detecting spatial domains can better understand the organization and functional distribution of tissues. Spatial domain recognition is a fundamental step in the process of ST data interpretation, which is also a major challenge in ST analysis. Therefore, developing more accurate, efficient, and general spatial domain recognition methods has become an important and urgent research direction. This article aims to review the current status and progress of spatial domain recognition research, explore the advantages and limitations of existing methods, and provide suggestions and directions for future tool development.</p>\",\"PeriodicalId\":55323,\"journal\":{\"name\":\"Briefings in Functional Genomics\",\"volume\":\" \",\"pages\":\"702-712\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Briefings in Functional Genomics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/bfgp/elae040\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in Functional Genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bfgp/elae040","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
在当前的生物信息学研究中,空间转录组学(ST)作为一种快速发展的技术正逐渐受到研究人员的广泛关注。空间域是基因表达和组织学在空间上一致的区域,检测空间域可以更好地了解组织的组织和功能分布。空间域识别是 ST 数据解读过程中的基础步骤,也是 ST 分析中的一大挑战。因此,开发更准确、高效、通用的空间域识别方法已成为一个重要而紧迫的研究方向。本文旨在回顾空间域识别研究的现状和进展,探讨现有方法的优势和局限,并为未来工具的开发提供建议和方向。
A comprehensive review of approaches for spatial domain recognition of spatial transcriptomes.
In current bioinformatics research, spatial transcriptomics (ST) as a rapidly evolving technology is gradually receiving widespread attention from researchers. Spatial domains are regions where gene expression and histology are consistent in space, and detecting spatial domains can better understand the organization and functional distribution of tissues. Spatial domain recognition is a fundamental step in the process of ST data interpretation, which is also a major challenge in ST analysis. Therefore, developing more accurate, efficient, and general spatial domain recognition methods has become an important and urgent research direction. This article aims to review the current status and progress of spatial domain recognition research, explore the advantages and limitations of existing methods, and provide suggestions and directions for future tool development.
期刊介绍:
Briefings in Functional Genomics publishes high quality peer reviewed articles that focus on the use, development or exploitation of genomic approaches, and their application to all areas of biological research. As well as exploring thematic areas where these techniques and protocols are being used, articles review the impact that these approaches have had, or are likely to have, on their field. Subjects covered by the Journal include but are not restricted to: the identification and functional characterisation of coding and non-coding features in genomes, microarray technologies, gene expression profiling, next generation sequencing, pharmacogenomics, phenomics, SNP technologies, transgenic systems, mutation screens and genotyping. Articles range in scope and depth from the introductory level to specific details of protocols and analyses, encompassing bacterial, fungal, plant, animal and human data.
The editorial board welcome the submission of review articles for publication. Essential criteria for the publication of papers is that they do not contain primary data, and that they are high quality, clearly written review articles which provide a balanced, highly informative and up to date perspective to researchers in the field of functional genomics.