有监督的结构学习

IF 2.7 3区 医学 Q1 BEHAVIORAL SCIENCES Biological Psychology Pub Date : 2024-10-19 DOI:10.1016/j.biopsycho.2024.108891
Karl J. Friston , Lancelot Da Costa , Alexander Tschantz , Alex Kiefer , Tommaso Salvatori , Victorita Neacsu , Magnus Koudahl , Conor Heins , Noor Sajid , Dimitrije Markovic , Thomas Parr , Tim Verbelen , Christopher L. Buckley
{"title":"有监督的结构学习","authors":"Karl J. Friston ,&nbsp;Lancelot Da Costa ,&nbsp;Alexander Tschantz ,&nbsp;Alex Kiefer ,&nbsp;Tommaso Salvatori ,&nbsp;Victorita Neacsu ,&nbsp;Magnus Koudahl ,&nbsp;Conor Heins ,&nbsp;Noor Sajid ,&nbsp;Dimitrije Markovic ,&nbsp;Thomas Parr ,&nbsp;Tim Verbelen ,&nbsp;Christopher L. Buckley","doi":"10.1016/j.biopsycho.2024.108891","DOIUrl":null,"url":null,"abstract":"<div><div>This paper concerns structure learning or discovery of discrete generative models. It focuses on Bayesian model selection and the assimilation of training data or content, with a special emphasis on the order in which data are ingested. A key move—in the ensuing schemes—is to place priors on the selection of models, based upon expected free energy. In this setting, expected free energy reduces to a constrained mutual information, where the constraints inherit from priors over outcomes (i.e., preferred outcomes). The resulting scheme is first used to perform image classification on the MNIST dataset to illustrate the basic idea, and then tested on a more challenging problem of discovering models with dynamics, using a simple sprite-based visual disentanglement paradigm and the Tower of Hanoi (cf., blocks world) problem. In these examples, generative models are constructed autodidactically to recover (i.e., disentangle) the factorial structure of latent states—and their characteristic paths or dynamics.</div></div>","PeriodicalId":55372,"journal":{"name":"Biological Psychology","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Supervised structure learning\",\"authors\":\"Karl J. Friston ,&nbsp;Lancelot Da Costa ,&nbsp;Alexander Tschantz ,&nbsp;Alex Kiefer ,&nbsp;Tommaso Salvatori ,&nbsp;Victorita Neacsu ,&nbsp;Magnus Koudahl ,&nbsp;Conor Heins ,&nbsp;Noor Sajid ,&nbsp;Dimitrije Markovic ,&nbsp;Thomas Parr ,&nbsp;Tim Verbelen ,&nbsp;Christopher L. Buckley\",\"doi\":\"10.1016/j.biopsycho.2024.108891\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper concerns structure learning or discovery of discrete generative models. It focuses on Bayesian model selection and the assimilation of training data or content, with a special emphasis on the order in which data are ingested. A key move—in the ensuing schemes—is to place priors on the selection of models, based upon expected free energy. In this setting, expected free energy reduces to a constrained mutual information, where the constraints inherit from priors over outcomes (i.e., preferred outcomes). The resulting scheme is first used to perform image classification on the MNIST dataset to illustrate the basic idea, and then tested on a more challenging problem of discovering models with dynamics, using a simple sprite-based visual disentanglement paradigm and the Tower of Hanoi (cf., blocks world) problem. In these examples, generative models are constructed autodidactically to recover (i.e., disentangle) the factorial structure of latent states—and their characteristic paths or dynamics.</div></div>\",\"PeriodicalId\":55372,\"journal\":{\"name\":\"Biological Psychology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biological Psychology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0301051124001510\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BEHAVIORAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological Psychology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301051124001510","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

本文涉及离散生成模型的结构学习或发现。它侧重于贝叶斯模型选择和训练数据或内容的同化,特别强调数据摄取的顺序。在随后的方案中,一个关键的举措是根据预期自由能对模型的选择进行先验。在这种情况下,预期自由能简化为受约束的互信息,其中的约束条件来自于对结果(即首选结果)的优先权。为了说明基本思想,我们首先使用所产生的方案在 MNIST 数据集上进行图像分类,然后使用一个简单的基于精灵的视觉解缠范例和河内塔(参见积木世界)问题,在发现具有动态性的模型这一更具挑战性的问题上进行了测试。在这些例子中,生成模型是自动构建的,以恢复(即分解)潜在状态的因子结构及其特征路径或动态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Supervised structure learning
This paper concerns structure learning or discovery of discrete generative models. It focuses on Bayesian model selection and the assimilation of training data or content, with a special emphasis on the order in which data are ingested. A key move—in the ensuing schemes—is to place priors on the selection of models, based upon expected free energy. In this setting, expected free energy reduces to a constrained mutual information, where the constraints inherit from priors over outcomes (i.e., preferred outcomes). The resulting scheme is first used to perform image classification on the MNIST dataset to illustrate the basic idea, and then tested on a more challenging problem of discovering models with dynamics, using a simple sprite-based visual disentanglement paradigm and the Tower of Hanoi (cf., blocks world) problem. In these examples, generative models are constructed autodidactically to recover (i.e., disentangle) the factorial structure of latent states—and their characteristic paths or dynamics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biological Psychology
Biological Psychology 医学-行为科学
CiteScore
4.20
自引率
11.50%
发文量
146
审稿时长
3 months
期刊介绍: Biological Psychology publishes original scientific papers on the biological aspects of psychological states and processes. Biological aspects include electrophysiology and biochemical assessments during psychological experiments as well as biologically induced changes in psychological function. Psychological investigations based on biological theories are also of interest. All aspects of psychological functioning, including psychopathology, are germane. The Journal concentrates on work with human subjects, but may consider work with animal subjects if conceptually related to issues in human biological psychology.
期刊最新文献
Interpersonal stressors predicting inflammation in adolescents: Moderation by emotion regulation and heart rate variability? Face emojis vs. Non-face emojis: Exploring neural mechanisms in text processing. Expectation to rewards modulates learning emotional words: Evidence from a hierarchical Bayesian model Multiple risk markers for increases in depression symptoms across two years: Evidence from the reward positivity and the error-related negativity The effects of transcranial direct current stimulation over the ventromedial prefrontal cortex on reactive aggression in intoxicated and sober individuals
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1