从原代 CD4+ T 细胞的 CRISPR 干扰推断基因调控网络,阐明免疫疾病的基因组基础。

IF 11.1 Q1 CELL BIOLOGY Cell genomics Pub Date : 2024-11-13 Epub Date: 2024-10-11 DOI:10.1016/j.xgen.2024.100671
Joshua S Weinstock, Maya M Arce, Jacob W Freimer, Mineto Ota, Alexander Marson, Alexis Battle, Jonathan K Pritchard
{"title":"从原代 CD4+ T 细胞的 CRISPR 干扰推断基因调控网络,阐明免疫疾病的基因组基础。","authors":"Joshua S Weinstock, Maya M Arce, Jacob W Freimer, Mineto Ota, Alexander Marson, Alexis Battle, Jonathan K Pritchard","doi":"10.1016/j.xgen.2024.100671","DOIUrl":null,"url":null,"abstract":"<p><p>The effects of genetic variation on complex traits act mainly through changes in gene regulation. Although many genetic variants have been linked to target genes in cis, the trans-regulatory cascade mediating their effects remains largely uncharacterized. Mapping trans-regulators based on natural genetic variation has been challenging due to small effects, but experimental perturbations offer a complementary approach. Using CRISPR, we knocked out 84 genes in primary CD4<sup>+</sup> T cells, targeting inborn error of immunity (IEI) disease transcription factors (TFs) and TFs without immune disease association. We developed a novel gene network inference method called linear latent causal Bayes (LLCB) to estimate the network from perturbation data and observed 211 regulatory connections between genes. We characterized programs affected by the TFs, which we associated with immune genome-wide association study (GWAS) genes, finding that JAK-STAT family members are regulated by KMT2A, an epigenetic regulator. These analyses reveal the trans-regulatory cascades linking GWAS genes to signaling pathways.</p>","PeriodicalId":72539,"journal":{"name":"Cell genomics","volume":" ","pages":"100671"},"PeriodicalIF":11.1000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gene regulatory network inference from CRISPR perturbations in primary CD4<sup>+</sup> T cells elucidates the genomic basis of immune disease.\",\"authors\":\"Joshua S Weinstock, Maya M Arce, Jacob W Freimer, Mineto Ota, Alexander Marson, Alexis Battle, Jonathan K Pritchard\",\"doi\":\"10.1016/j.xgen.2024.100671\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The effects of genetic variation on complex traits act mainly through changes in gene regulation. Although many genetic variants have been linked to target genes in cis, the trans-regulatory cascade mediating their effects remains largely uncharacterized. Mapping trans-regulators based on natural genetic variation has been challenging due to small effects, but experimental perturbations offer a complementary approach. Using CRISPR, we knocked out 84 genes in primary CD4<sup>+</sup> T cells, targeting inborn error of immunity (IEI) disease transcription factors (TFs) and TFs without immune disease association. We developed a novel gene network inference method called linear latent causal Bayes (LLCB) to estimate the network from perturbation data and observed 211 regulatory connections between genes. We characterized programs affected by the TFs, which we associated with immune genome-wide association study (GWAS) genes, finding that JAK-STAT family members are regulated by KMT2A, an epigenetic regulator. These analyses reveal the trans-regulatory cascades linking GWAS genes to signaling pathways.</p>\",\"PeriodicalId\":72539,\"journal\":{\"name\":\"Cell genomics\",\"volume\":\" \",\"pages\":\"100671\"},\"PeriodicalIF\":11.1000,\"publicationDate\":\"2024-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell genomics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.xgen.2024.100671\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/11 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.xgen.2024.100671","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/11 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

遗传变异对复杂性状的影响主要是通过基因调控的变化产生的。虽然许多基因变异与顺式目标基因有关,但介导其效应的反式调控级联在很大程度上仍未定性。由于影响较小,基于自然遗传变异绘制跨调控因子图谱一直具有挑战性,但实验扰动提供了一种补充方法。我们利用CRISPR技术敲除了原代CD4+ T细胞中的84个基因,靶向先天性免疫错误(IEI)疾病转录因子(TFs)和与免疫疾病无关的TFs。我们开发了一种名为线性潜在因果贝叶斯(LLCB)的新型基因网络推断方法,以从扰动数据中估计网络,并观察到基因之间有211个调控连接。我们描述了受TFs影响的程序,并将其与免疫全基因组关联研究(GWAS)基因联系起来,发现JAK-STAT家族成员受表观遗传调控因子KMT2A的调控。这些分析揭示了连接全基因组关联研究(GWAS)基因与信号通路的跨调节级联。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Gene regulatory network inference from CRISPR perturbations in primary CD4+ T cells elucidates the genomic basis of immune disease.

The effects of genetic variation on complex traits act mainly through changes in gene regulation. Although many genetic variants have been linked to target genes in cis, the trans-regulatory cascade mediating their effects remains largely uncharacterized. Mapping trans-regulators based on natural genetic variation has been challenging due to small effects, but experimental perturbations offer a complementary approach. Using CRISPR, we knocked out 84 genes in primary CD4+ T cells, targeting inborn error of immunity (IEI) disease transcription factors (TFs) and TFs without immune disease association. We developed a novel gene network inference method called linear latent causal Bayes (LLCB) to estimate the network from perturbation data and observed 211 regulatory connections between genes. We characterized programs affected by the TFs, which we associated with immune genome-wide association study (GWAS) genes, finding that JAK-STAT family members are regulated by KMT2A, an epigenetic regulator. These analyses reveal the trans-regulatory cascades linking GWAS genes to signaling pathways.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.10
自引率
0.00%
发文量
0
期刊最新文献
A combined deep learning framework for mammalian m6A site prediction. Analysis of single-cell CRISPR perturbations indicates that enhancers predominantly act multiplicatively. Complex structural variation is prevalent and highly pathogenic in pediatric solid tumors. Gene regulatory network inference from CRISPR perturbations in primary CD4+ T cells elucidates the genomic basis of immune disease. Leveraging genomes to support conservation and bioeconomy policies in a megadiverse country.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1