量化手术团队对手术室流程各阶段的影响。

IF 3.2 Q1 HEALTH CARE SCIENCES & SERVICES Frontiers in digital health Pub Date : 2024-10-03 eCollection Date: 2024-01-01 DOI:10.3389/fdgth.2024.1455477
Adam Meyers, Mertcan Daysalilar, Arman Dagal, Michael Wang, Onur Kutlu, Mehmet Akcin
{"title":"量化手术团队对手术室流程各阶段的影响。","authors":"Adam Meyers, Mertcan Daysalilar, Arman Dagal, Michael Wang, Onur Kutlu, Mehmet Akcin","doi":"10.3389/fdgth.2024.1455477","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Operating room (OR) efficiency is a key factor in determining surgical healthcare costs. To enable targeted changes for improving OR efficiency, a comprehensive quantification of the underlying sources of variability contributing to OR efficiency is needed. Previous literature has focused on select stages of the OR process or on aggregate process times influencing efficiency. This study proposes to analyze the OR process in more fine-grained stages to better localize and quantify the impact of important factors.</p><p><strong>Methods: </strong>Data spanning from 2019-2023 were obtained from a surgery center at a large academic hospital. Linear mixed models were developed to quantify the sources of variability in the OR process. The primary factors analyzed in this study included the primary surgeon, responsible anesthesia provider, primary circulating nurse, and procedure type. The OR process was segmented into eight stages that quantify eight process times, e.g., procedure duration and procedure start time delay. Model selection was performed to identify the key factors in each stage and to quantify variability.</p><p><strong>Results: </strong>Procedure type accounted for the most variability in three process times and for 44.2% and 45.5% of variability, respectively, in procedure duration and OR time (defined as the total time the patient spent in the OR). Primary surgeon, however, accounted for the most variability in five of the eight process times and accounted for as much as 21.1% of variability. The primary circulating nurse was also found to be significant for all eight process times.</p><p><strong>Discussion: </strong>The key findings of this study include the following. (1) It is crucial to segment the OR process into smaller, more homogeneous stages to more accurately assess the underlying sources of variability. (2) Variability in the aggregate quantity of OR time appears to mostly reflect the variability in procedure duration, which is a subinterval of OR time. (3) Primary surgeon has a larger effect on OR efficiency than previously reported in the literature and is an important factor throughout the entire OR process. (4) Primary circulating nurse is significant for all stages of the OR process, albeit their effect is small.</p>","PeriodicalId":73078,"journal":{"name":"Frontiers in digital health","volume":"6 ","pages":"1455477"},"PeriodicalIF":3.2000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11484065/pdf/","citationCount":"0","resultStr":"{\"title\":\"Quantifying the impact of surgical teams on each stage of the operating room process.\",\"authors\":\"Adam Meyers, Mertcan Daysalilar, Arman Dagal, Michael Wang, Onur Kutlu, Mehmet Akcin\",\"doi\":\"10.3389/fdgth.2024.1455477\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>Operating room (OR) efficiency is a key factor in determining surgical healthcare costs. To enable targeted changes for improving OR efficiency, a comprehensive quantification of the underlying sources of variability contributing to OR efficiency is needed. Previous literature has focused on select stages of the OR process or on aggregate process times influencing efficiency. This study proposes to analyze the OR process in more fine-grained stages to better localize and quantify the impact of important factors.</p><p><strong>Methods: </strong>Data spanning from 2019-2023 were obtained from a surgery center at a large academic hospital. Linear mixed models were developed to quantify the sources of variability in the OR process. The primary factors analyzed in this study included the primary surgeon, responsible anesthesia provider, primary circulating nurse, and procedure type. The OR process was segmented into eight stages that quantify eight process times, e.g., procedure duration and procedure start time delay. Model selection was performed to identify the key factors in each stage and to quantify variability.</p><p><strong>Results: </strong>Procedure type accounted for the most variability in three process times and for 44.2% and 45.5% of variability, respectively, in procedure duration and OR time (defined as the total time the patient spent in the OR). Primary surgeon, however, accounted for the most variability in five of the eight process times and accounted for as much as 21.1% of variability. The primary circulating nurse was also found to be significant for all eight process times.</p><p><strong>Discussion: </strong>The key findings of this study include the following. (1) It is crucial to segment the OR process into smaller, more homogeneous stages to more accurately assess the underlying sources of variability. (2) Variability in the aggregate quantity of OR time appears to mostly reflect the variability in procedure duration, which is a subinterval of OR time. (3) Primary surgeon has a larger effect on OR efficiency than previously reported in the literature and is an important factor throughout the entire OR process. (4) Primary circulating nurse is significant for all stages of the OR process, albeit their effect is small.</p>\",\"PeriodicalId\":73078,\"journal\":{\"name\":\"Frontiers in digital health\",\"volume\":\"6 \",\"pages\":\"1455477\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11484065/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in digital health\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/fdgth.2024.1455477\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"HEALTH CARE SCIENCES & SERVICES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in digital health","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fdgth.2024.1455477","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

摘要

导言:手术室(OR)效率是决定手术医疗成本的关键因素。为实现有针对性的改革以提高手术室效率,需要对影响手术室效率的基本变异源进行全面量化。以往的文献主要关注手术室流程的特定阶段或影响效率的总流程时间。本研究建议对手术室流程进行更精细的阶段分析,以更好地定位和量化重要因素的影响:方法:从一家大型学术医院的手术中心获得了 2019-2023 年的数据。建立了线性混合模型来量化手术室流程中的变异性来源。本研究分析的主要因素包括主刀医生、麻醉责任提供者、主要循环护士和手术类型。手术室流程被划分为八个阶段,量化了八个流程时间,如手术持续时间和手术开始时间延迟。对模型进行选择,以确定每个阶段的关键因素并量化变异性:结果:手术类型在三个过程时间中的变异性最大,在手术持续时间和手术室时间(定义为患者在手术室的总时间)中分别占 44.2% 和 45.5% 的变异性。然而,在八个流程时间中,主刀医生在五个流程时间中的变异性最大,占变异性的 21.1%。主要循环护士对所有八个流程时间的影响也很显著:本研究的主要发现包括以下几点。(1) 将手术室流程划分为更小、更均匀的阶段至关重要,这样才能更准确地评估变异的根本原因。(2) 手术室时间总量的变化似乎主要反映了手术持续时间的变化,而手术持续时间是手术室时间的一个子区间。(3) 主刀医生对手术室效率的影响大于之前的文献报道,并且是整个手术室流程中的重要因素。(4) 主要循环护士对手术室流程的所有阶段都有重要影响,尽管其影响较小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Quantifying the impact of surgical teams on each stage of the operating room process.

Introduction: Operating room (OR) efficiency is a key factor in determining surgical healthcare costs. To enable targeted changes for improving OR efficiency, a comprehensive quantification of the underlying sources of variability contributing to OR efficiency is needed. Previous literature has focused on select stages of the OR process or on aggregate process times influencing efficiency. This study proposes to analyze the OR process in more fine-grained stages to better localize and quantify the impact of important factors.

Methods: Data spanning from 2019-2023 were obtained from a surgery center at a large academic hospital. Linear mixed models were developed to quantify the sources of variability in the OR process. The primary factors analyzed in this study included the primary surgeon, responsible anesthesia provider, primary circulating nurse, and procedure type. The OR process was segmented into eight stages that quantify eight process times, e.g., procedure duration and procedure start time delay. Model selection was performed to identify the key factors in each stage and to quantify variability.

Results: Procedure type accounted for the most variability in three process times and for 44.2% and 45.5% of variability, respectively, in procedure duration and OR time (defined as the total time the patient spent in the OR). Primary surgeon, however, accounted for the most variability in five of the eight process times and accounted for as much as 21.1% of variability. The primary circulating nurse was also found to be significant for all eight process times.

Discussion: The key findings of this study include the following. (1) It is crucial to segment the OR process into smaller, more homogeneous stages to more accurately assess the underlying sources of variability. (2) Variability in the aggregate quantity of OR time appears to mostly reflect the variability in procedure duration, which is a subinterval of OR time. (3) Primary surgeon has a larger effect on OR efficiency than previously reported in the literature and is an important factor throughout the entire OR process. (4) Primary circulating nurse is significant for all stages of the OR process, albeit their effect is small.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.20
自引率
0.00%
发文量
0
审稿时长
13 weeks
期刊最新文献
The walking surface influences vertical ground reaction force and centre of pressure data obtained with pressure-sensing insoles. Promoting appropriate medication use by leveraging medical big data. Prospects for AI clinical summarization to reduce the burden of patient chart review. Data management practice of health extension workers and associated factors in Central Gondar Zone, northwest Ethiopia. Developing remote patient monitoring infrastructure using commercially available cloud platforms.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1