PCSK9抑制剂通过抑制LRP8/GPX4介导的铁蛋白沉积防止心肌缺血再灌注损伤。

E Lusha, Ping Zhao
{"title":"PCSK9抑制剂通过抑制LRP8/GPX4介导的铁蛋白沉积防止心肌缺血再灌注损伤。","authors":"E Lusha, Ping Zhao","doi":"10.3233/CH-242444","DOIUrl":null,"url":null,"abstract":"<p><p>Myocardial ischemia-reperfusion injury is accompanied by ferroptosis mediated by reactive oxygen species and iron ions, which aggravates myocardial tissue damage. The present study aims to explore the molecular mechanism underlying the mitigating effects f PCSK9 on myocardial ischemia-reperfusion injury. MI/R rat model and OGD/R induced H9c2 model were established. The interaction between PCSK9 inhibitor and LRP8 was predicted by STRING database and verified by Immunoprecipitation assay experiment. CCK-8 kit results confirmed that PCSK9 inhibitor effectively protected against cardiomyocyte damage induced by OGD/R. TTC and histological examination via H&E staining revealed a significant alleviation of myocardial infarction and pathological alterations upon treatment with the PCSK9 inhibitor. Besides, DCFH-DA staining and biochemical kit results showed that PCSK9 inhibitor could regulate the changes of ferroptosis related indicators [ROS, iron level, MDA, SOD] and inhibit ferroptosis. Rescue experiments showed that PCSK9 inhibitors targeted LRP8 expression and inhibited GPX4/ROS-mediated ferroptosis in I/R-induced rats. Our study suggested that PCSK9 inhibitors could attenuate myocardial I/R injury, with the underlying mechanism intimately tied to the targeted modulation of LRP8/GPX4-mediated ferroptosis.</p>","PeriodicalId":93943,"journal":{"name":"Clinical hemorheology and microcirculation","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PCSK9 inhibitor protects against myocardial ischemia-reperfusion injury via inhibiting LRP8/GPX4-mediated ferroptosis.\",\"authors\":\"E Lusha, Ping Zhao\",\"doi\":\"10.3233/CH-242444\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Myocardial ischemia-reperfusion injury is accompanied by ferroptosis mediated by reactive oxygen species and iron ions, which aggravates myocardial tissue damage. The present study aims to explore the molecular mechanism underlying the mitigating effects f PCSK9 on myocardial ischemia-reperfusion injury. MI/R rat model and OGD/R induced H9c2 model were established. The interaction between PCSK9 inhibitor and LRP8 was predicted by STRING database and verified by Immunoprecipitation assay experiment. CCK-8 kit results confirmed that PCSK9 inhibitor effectively protected against cardiomyocyte damage induced by OGD/R. TTC and histological examination via H&E staining revealed a significant alleviation of myocardial infarction and pathological alterations upon treatment with the PCSK9 inhibitor. Besides, DCFH-DA staining and biochemical kit results showed that PCSK9 inhibitor could regulate the changes of ferroptosis related indicators [ROS, iron level, MDA, SOD] and inhibit ferroptosis. Rescue experiments showed that PCSK9 inhibitors targeted LRP8 expression and inhibited GPX4/ROS-mediated ferroptosis in I/R-induced rats. Our study suggested that PCSK9 inhibitors could attenuate myocardial I/R injury, with the underlying mechanism intimately tied to the targeted modulation of LRP8/GPX4-mediated ferroptosis.</p>\",\"PeriodicalId\":93943,\"journal\":{\"name\":\"Clinical hemorheology and microcirculation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinical hemorheology and microcirculation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/CH-242444\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical hemorheology and microcirculation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/CH-242444","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

心肌缺血再灌注损伤伴随着活性氧和铁离子介导的铁变态反应,从而加重了心肌组织损伤。本研究旨在探讨 PCSK9 减轻心肌缺血再灌注损伤的分子机制。研究建立了 MI/R 大鼠模型和 OGD/R 诱导的 H9c2 模型。通过STRING数据库预测了PCSK9抑制剂与LRP8之间的相互作用,并通过免疫沉淀实验进行了验证。CCK-8试剂盒结果证实,PCSK9抑制剂能有效保护OGD/R诱导的心肌细胞损伤。TTC和H&E染色组织学检查显示,使用PCSK9抑制剂治疗后,心肌梗死和病理改变明显减轻。此外,DCFH-DA染色和生化试剂盒检测结果显示,PCSK9抑制剂能调节铁变态反应相关指标(ROS、铁水平、MDA、SOD)的变化,抑制铁变态反应。挽救实验表明,PCSK9抑制剂能靶向LRP8的表达,抑制I/R诱导的大鼠由GPX4/ROS介导的铁变态反应。我们的研究表明,PCSK9抑制剂可减轻心肌I/R损伤,其潜在机制与靶向调节LRP8/GPX4介导的铁蛋白沉积密切相关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
PCSK9 inhibitor protects against myocardial ischemia-reperfusion injury via inhibiting LRP8/GPX4-mediated ferroptosis.

Myocardial ischemia-reperfusion injury is accompanied by ferroptosis mediated by reactive oxygen species and iron ions, which aggravates myocardial tissue damage. The present study aims to explore the molecular mechanism underlying the mitigating effects f PCSK9 on myocardial ischemia-reperfusion injury. MI/R rat model and OGD/R induced H9c2 model were established. The interaction between PCSK9 inhibitor and LRP8 was predicted by STRING database and verified by Immunoprecipitation assay experiment. CCK-8 kit results confirmed that PCSK9 inhibitor effectively protected against cardiomyocyte damage induced by OGD/R. TTC and histological examination via H&E staining revealed a significant alleviation of myocardial infarction and pathological alterations upon treatment with the PCSK9 inhibitor. Besides, DCFH-DA staining and biochemical kit results showed that PCSK9 inhibitor could regulate the changes of ferroptosis related indicators [ROS, iron level, MDA, SOD] and inhibit ferroptosis. Rescue experiments showed that PCSK9 inhibitors targeted LRP8 expression and inhibited GPX4/ROS-mediated ferroptosis in I/R-induced rats. Our study suggested that PCSK9 inhibitors could attenuate myocardial I/R injury, with the underlying mechanism intimately tied to the targeted modulation of LRP8/GPX4-mediated ferroptosis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Prognostic significance of serum inflammatory markers in patients with acute ischemic stroke undergoing revascularization therapy. Association between reduced hemoglobin-to-red cell distribution width ratio and elevated cardiovascular mortality in patients with diabetes: Insights from the National Health and Nutrition Examination Study, 1999-2018. The value of nomogram model combined with contrast-enhanced ultrasound in the differential diagnosis of cervical tuberculosis lymphadenitis and metastatic lymph node. PCSK9 inhibitor protects against myocardial ischemia-reperfusion injury via inhibiting LRP8/GPX4-mediated ferroptosis. Encapsulated papillary carcinoma of breast: Comparative study of multimodal ultrasound manifestations and pathological features.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1