与神奇的小鼠共事:作为模式生物的麝。

Anick Standley, Jinhan Xie, Angelica WY Lau, Lauren Grote, Andrew J. Gifford
{"title":"与神奇的小鼠共事:作为模式生物的麝。","authors":"Anick Standley,&nbsp;Jinhan Xie,&nbsp;Angelica WY Lau,&nbsp;Lauren Grote,&nbsp;Andrew J. Gifford","doi":"10.1002/cpz1.70021","DOIUrl":null,"url":null,"abstract":"<p>The laboratory mouse has been described as a “miracle” model organism, providing a window by which we may gain an understanding of ourselves. Since the first recorded mouse experiment in 1664, the mouse has become the most used animal model in biomedical research. Mice are ideally suited as a model organism because of their small size, short gestation period, large litter size, and genetic similarity to humans. This article provides a broad overview of the laboratory mouse as a model organism and is intended for undergraduates and those new to working with mice. We delve into the history of the laboratory mouse and outline important terminology to accurately describe research mice. The types of laboratory mice available to researchers are reviewed, including outbred stocks, inbred strains, immunocompromised mice, and genetically engineered mice. The critical role mice have played in advancing knowledge in the areas of oncology, immunology, and pharmacology is highlighted by examining the significant contribution of mice to Nobel Prize winning research. International mouse mutagenesis programs and accurate phenotyping of mouse models are outlined. We also explain important considerations for working with mice, including animal ethics; the welfare principles of replacement, refinement, and reduction; and the choice of mouse model in experimental design. Finally, we present practical advice for maintaining a mouse colony, which involves adequate training of staff, the logistics of mouse housing, monitoring colony health, and breeding strategies. Useful resources for working with mice are also listed. The aim of this overview is to equip the reader with a broad appreciation of the enormous potential and some of the complexities of working with the laboratory mouse in a quest to improve human health. © 2024 The Author(s). Current Protocols published by Wiley Periodicals LLC.</p>","PeriodicalId":93970,"journal":{"name":"Current protocols","volume":"4 10","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cpz1.70021","citationCount":"0","resultStr":"{\"title\":\"Working with Miraculous Mice: Mus musculus as a Model Organism\",\"authors\":\"Anick Standley,&nbsp;Jinhan Xie,&nbsp;Angelica WY Lau,&nbsp;Lauren Grote,&nbsp;Andrew J. Gifford\",\"doi\":\"10.1002/cpz1.70021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The laboratory mouse has been described as a “miracle” model organism, providing a window by which we may gain an understanding of ourselves. Since the first recorded mouse experiment in 1664, the mouse has become the most used animal model in biomedical research. Mice are ideally suited as a model organism because of their small size, short gestation period, large litter size, and genetic similarity to humans. This article provides a broad overview of the laboratory mouse as a model organism and is intended for undergraduates and those new to working with mice. We delve into the history of the laboratory mouse and outline important terminology to accurately describe research mice. The types of laboratory mice available to researchers are reviewed, including outbred stocks, inbred strains, immunocompromised mice, and genetically engineered mice. The critical role mice have played in advancing knowledge in the areas of oncology, immunology, and pharmacology is highlighted by examining the significant contribution of mice to Nobel Prize winning research. International mouse mutagenesis programs and accurate phenotyping of mouse models are outlined. We also explain important considerations for working with mice, including animal ethics; the welfare principles of replacement, refinement, and reduction; and the choice of mouse model in experimental design. Finally, we present practical advice for maintaining a mouse colony, which involves adequate training of staff, the logistics of mouse housing, monitoring colony health, and breeding strategies. Useful resources for working with mice are also listed. The aim of this overview is to equip the reader with a broad appreciation of the enormous potential and some of the complexities of working with the laboratory mouse in a quest to improve human health. © 2024 The Author(s). Current Protocols published by Wiley Periodicals LLC.</p>\",\"PeriodicalId\":93970,\"journal\":{\"name\":\"Current protocols\",\"volume\":\"4 10\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cpz1.70021\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current protocols\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cpz1.70021\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current protocols","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cpz1.70021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

实验鼠被誉为 "神奇 "的模式生物,为我们了解自身提供了一个窗口。自 1664 年首次记录小鼠实验以来,小鼠已成为生物医学研究中使用最多的动物模型。小鼠体型小、妊娠期短、产仔多,而且基因与人类相似,因此非常适合作为模型生物。本文概述了作为模式生物的实验小鼠,适用于本科生和刚刚接触小鼠研究的人员。我们深入探讨了实验小鼠的历史,并概述了准确描述研究小鼠的重要术语。回顾了可供研究人员使用的实验小鼠类型,包括近交系、近交系、免疫受损小鼠和基因工程小鼠。小鼠在推动肿瘤学、免疫学和药理学领域的知识发展方面发挥了关键作用,这一点通过研究小鼠对诺贝尔奖研究的重大贡献得到了强调。我们概述了国际小鼠诱变计划和小鼠模型的精确表型。我们还解释了使用小鼠的重要注意事项,包括动物伦理;替代、改进和减少的福利原则;以及在实验设计中对小鼠模型的选择。最后,我们介绍了维持小鼠群落的实用建议,其中包括对工作人员进行适当培训、小鼠饲养的后勤工作、监测群落健康状况以及繁殖策略。此外,我们还列出了与小鼠打交道的有用资源。本综述旨在让读者广泛了解实验室小鼠在改善人类健康方面的巨大潜力和复杂性。© 2024 作者。当前协议》由 Wiley Periodicals LLC 出版。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Working with Miraculous Mice: Mus musculus as a Model Organism

The laboratory mouse has been described as a “miracle” model organism, providing a window by which we may gain an understanding of ourselves. Since the first recorded mouse experiment in 1664, the mouse has become the most used animal model in biomedical research. Mice are ideally suited as a model organism because of their small size, short gestation period, large litter size, and genetic similarity to humans. This article provides a broad overview of the laboratory mouse as a model organism and is intended for undergraduates and those new to working with mice. We delve into the history of the laboratory mouse and outline important terminology to accurately describe research mice. The types of laboratory mice available to researchers are reviewed, including outbred stocks, inbred strains, immunocompromised mice, and genetically engineered mice. The critical role mice have played in advancing knowledge in the areas of oncology, immunology, and pharmacology is highlighted by examining the significant contribution of mice to Nobel Prize winning research. International mouse mutagenesis programs and accurate phenotyping of mouse models are outlined. We also explain important considerations for working with mice, including animal ethics; the welfare principles of replacement, refinement, and reduction; and the choice of mouse model in experimental design. Finally, we present practical advice for maintaining a mouse colony, which involves adequate training of staff, the logistics of mouse housing, monitoring colony health, and breeding strategies. Useful resources for working with mice are also listed. The aim of this overview is to equip the reader with a broad appreciation of the enormous potential and some of the complexities of working with the laboratory mouse in a quest to improve human health. © 2024 The Author(s). Current Protocols published by Wiley Periodicals LLC.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.00
自引率
0.00%
发文量
0
期刊最新文献
Analysis of Free Oligosaccharides in Urine by High-Performance Liquid Chromatography–Tandem Mass Spectrometry Synthesis and Application of a Caged Bioluminescent Probe for the Immunoproteasome Engineering and Evaluating Vascularized Organotypic Spheroids On-Chip Vesicular Stomatitis Virus as a Platform for Protease Activity Measurements Workflow to Select Functional Promoter DNA Baits and Screen Arrayed Gene Libraries in Yeast
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1